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Charge correlations in dense ionic fluids give rise to novel effects such as long-range screening and
colloidal stabilization which are not predicted by the classic Debye–Hückel theory. We show that a
Coulomb or charge-frustrated Ising model, which accounts for both long-range Coulomb and short-
range molecular interactions, simply describes some of these ionic correlations. In particular, we
obtain, at a mean field level and in simulations, a non-monotonic dependence of the screening length
on the temperature. Using a combination of simulations and mean field theories, we study how the cor-
relations in the various regimes are affected by the strength of the short ranged interactions. Published
by AIP Publishing. https://doi.org/10.1063/1.5043410

INTRODUCTION

The thermodynamic properties of ionic fluids are gov-
erned by long-range Coulomb interactions between ions1 in
addition to the short-range molecular interactions present
in neutral liquids. Strong electrostatic correlations lead to
counter-intuitive phenomena in dense ionic fluids such as
charge inversion,2–8 altered capacitance at electrode–fluid
interfaces,6,9–11 and the recently observed “anomalous screen-
ing” in surface force experiments.12,13 These effects could be
important in the self-assembly of a variety of biomolecules14

and soft materials.15 Electrostatic correlations can be partic-
ularly pronounced in molten salts and ionic liquids which
comprise ions alone and no neutral solvent molecules. The
novel properties of such purely ionic fluids make them use-
ful for a variety of scientific and technological applications,
such as energy storage,16,17 as industrial lubricants,18 and
of serving as media capable of supporting stable colloidal
nanoparticles.19,20

Pure ionic fluids are ideal model systems for the theo-
retical study of the statistical physics of strongly correlated
electrostatics without the complicating ion-specific effects of
hydration in aqueous solution.21 A theoretical description
of dense ionic fluids must go beyond the classic Debye–
Hückel (DH) theory, which is valid only for dilute elec-
trolytes with weak inter-ionic correlations,22 or equivalently,
small inverse Debye screening length (also known as the
Debye constant) in relation to the inverse molecular size
κD ≡

√
(4πρq2)/(εkBT ) � σ−1, where ρ is the concen-

tration of ions (per unit volume), q is the unit charge, ε is
the dielectric constant of the electrolyte, kBT is the thermal
energy, and σ is the ion diameter. Indeed, recent surface force
experiments using concentrated solutions of salts and ionic liq-
uids measure screening lengths, 1/κs, well in excess of the DH

a)Present address: Department of Physics, University of California, Merced,
California 95340, USA

prediction, 1/κD, and show non-monotonic dependence of κs

on κD.12,13,23 Especially surprising is the universal scaling col-
lapse of κsσ when plotted against κDσ, despite the use of a
range of ion types, solvent types, and ion concentrations.13,23

The particular scaling behavior in the dense ionic regime,
κs ∼ κ−2

D , is not predicted by existing theoretical results,
suggesting the need to go beyond standard approaches in the
field.

A variety of theoretical techniques have been used to
extend the DH theory to the strong Coulomb coupling or high
κD regime.24 To take two examples, Attard uses a standard
closure from the theory of liquids,25 while Lee and Fisher
generalize the DH theory by considering an oscillatory poten-
tial that intuitively arises from the preference of oppositely
charged ions to arrange in alternating layers.26 Both of these
theories result in a regime at large κD where spatial correlations
between ions cannot be ignored as they are in the DH theory.1

Indeed, the manifestation of these correlations as oscillations
in the charge density was predicted long ago by Kirkwood.27 In
this large κD regime, the charge correlation length can become
much longer than the screening length predicted by DH the-
ory, qualitatively similar to observations of anomalous screen-
ing in the aforementioned surface force experiments. More
recent work based on both simulations and phenomenological
theories reproduces this oscillatory, large κD regime.3–8 How-
ever, none of these theoretical studies reproduces the universal
scaling reported in Ref. 23.

Here, we use a model framework to investigate long length
scale phenomena in ionic fluids: the Coulomb or charge-
frustrated Ising (FI) model,10,28,29 a lattice model which
accounts for both the long-range Coulomb and the short-range
molecular interactions present in ionic fluids. While many
statistical mechanical formulations of ionic correlations treat
ions as charged hard spheres within the minimal Restrictive
Primitive Model (RPM),25,30 we call attention here to the
importance of short-range attractive interactions, such as dis-
persion (or van der Waals) forces. The short-range molecular
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interaction is included in the FI model as a nearest neighbor
“ferromagnetic” interaction (similar molecular species tend to
attract), and we show that it controls the crossover between the
small and large-κD regimes. Intuitively, the length scale of the
short-range interaction, lc, competes with that of the electro-
static interaction, 1/κD, and when the two become similar, the
DH theory breaks down.

In the rest of the paper, we first introduce the FI model
and its simple, continuum mean field form which is sufficient
to predict a crossover in regimes between small and large κD.
The mean field theory is only valid when the ratio of Coulomb
and ferromagnetic interaction strengths is small, and fails as
this ratio is increased. We then present our Monte Carlo sim-
ulation results. The simulation results are quantitatively well
described by the mean field theory in the limit of low Coulomb
interaction strength and are in qualitative agreement with them
in other regimes. The simulations allow us to comment on the
screening behavior in regimes inaccessible by the mean field
theory. The simulations and the mean field theory also elu-
cidate how a short-ranged attractive interaction can modify
the screening behavior of ionic fluids, such as the crossover
to the strong Coulomb coupling regime as well as the scal-
ing of the screening length with the Debye constant seen in
simulations.

MODEL

We study the Coulomb or charge-frustrated Ising model
on a three dimensional (d = 3) simple cubic lattice with each
site occupied by a positive or negative charge as a simple model
for ionic fluids. Since the positive and negative ions in an ionic
fluid are chemically different species, the differences in their
size or van der Waals interactions may lead to a preferen-
tial attractive interaction between like ions.10 In this model,
the charges interact through a nearest-neighbor ferromagnetic
Ising interaction, representing short-range molecular attrac-
tion between like charges, as well as the Coulomb interaction.
The corresponding Hamiltonian is

H =
1
2

N∑
i

N∑
j,i

qi

(
Q
rij
− Jij

)
qj, (1)

with N being the number of lattice sites, qi = qri = ±1 being
the instantaneous charge density at site i located at position ri,
Q > 0 being the Coulomb interaction strength, rij = |ri − rj |,
and

Jij =



J i, j nearest neighbors,

0 otherwise,
(2)

where J > 0 governs the strength of the Ising interaction. The
ensemble average of the charge density 〈qr〉 → 0 in the bulk
and the unit of length is the lattice length, or nearest neighbor
distance, a.

We can use the static charge structure factor
Sq(k) = 〈qk q−k〉, to extract a screening length, where qk is
the Fourier transform of the instantaneous charge density qr.
In the continuum limit of the mean field theory, k � a−1, the
static charge structure factor has the form10

ρ2Sq(k)/T = k2/
[
a2Jk4 + (T − 2dJ)k2 + 4πρQ

]
, (3)

with T being the temperature and the Boltzmann constant,
kB, set to 1, and ρ = 1/a3 in this study. The Ising critical
temperature is defined by T̄ I

c ≡ 2dJ (overbarred variables
are continuum mean field results). Inverse Fourier transform-
ing the structure factor gives the charge–charge correlation
function, Gq(r, r′) = 〈qr qr′〉. The continuum Sq(k) in Eq. (3)
corresponds to, for an isotropic fluid at large r, the real space
charge correlations given by

Gq(r) =
A

4πr
exp(−κsr) cos(ωr + θ), (4)

with A being a normalization constant dependent on the param-
eters T, J, and Q; ω being the spatial oscillation frequency; θ
being a phase factor fixed by the electroneutrality condition;
and κs being the calculated screening constant corresponding
to the decay of charge correlations. The latter may differ from
the Debye inverse screening length, which for the FI model is
identified with

κD ≡

√
4πρQ

T
. (5)

The phases and regimes of the FI mean field theory are revealed
by examining how the inverse length scales κs andω vary while
changing the parameters Q, J, and T. In the rest of the paper,
we fix the value of Q and treat κD as a parameter. By varying
κD at fixed Q, we access different temperature regimes.

Long-range modulated order characterizes the phase
below the critical point,29,31 and so the FI continuum mean
field critical temperature is simply given by the temperature at
which κs → 0 from positive values

T̄FI
c = T̄ I

c −

√
16πa2J ρQ. (6)

In this work, we focus on the fluid-like regime above the critical
point where there is no real long-range order (κs > 0). There are
two regimes above the critical point which are differentiated by
the value ofω: when T is very high,ω = 0, while at intermediate
temperatures,ω > 0. The transition between these two regimes
occurs at

T̄ ∗ = T̄ I
c +

√
16πa2J ρQ. (7)

At high temperatures, T > T̄ ∗, or equivalently, small κD,
charge correlations decay exponentially. Furthermore, the
screening constant tends to the Debye constant when tem-
perature is very large, T � T̄ ∗: κs → κD. This small κD

regime corresponds to low Coulomb coupling and is equiv-
alent to the Debye–Hückel theory. For large κD, obtained at
low temperatures (equivalent to strong coupling), oscillations
with frequency ω appear in the charge correlations, while the
inverse decay length κs decreases with κD,

κ̄s =
1

2l̄c
≡

√
T − T̄FI

c

4a2J
, T < T̄ ∗, (8)

where lc is the mean field FI correlation length and

ω̄ =

√
(κ̄∗s )2 − (κ̄s)2, T < T̄ ∗, (9)

with

κ̄∗s ≡

(
4πρQ

a2J

)1/4

(10)
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being the maximum screening constant, achieved at T̄ ∗ [see
the peak in Fig. 1, which occurs at the κ̄∗D corresponding to T̄ ∗,
Eq. (7)]. Thus, in the FI mean field theory, κ̄∗D describes the
transition between a DH-like regime with “gas-like” charge
correlations and a second regime with “liquid-like” charge
correlations, where κs has inverse dependence on tempera-
ture as in the DH regime κsa ∼ (κDa)−1. The temperature
dependence of κs in the “liquid-like” regime can be seen in
Eq. (8) when T̄FI

c � T < T̄ ∗. The mean field prediction for
κs is plotted against κD in Fig. 1 for ρQ/J = 0.5/a2. The anal-
ogy with gas and liquid-like correlations is useful intuitively
(and has been noted by others in connection with the so-called
Fisher-Widom line7), but one important difference here is that
the oscillation frequency is not fixed by the ion size and can
instead vary significantly for different κD [see ω̄ given in
Eq. (9)].

The correlation length associated with short-range Ising
interactions, lc, defines a molecular length scale in addi-
tion to the lattice size, a. In Fig. 1, we plot the inverse
length-scales associated with the competing interactions of
the FI model, namely, the Debye constant, κD, originating in
Coulomb interactions, and the inverse FI correlation length,
l−1
c , given in Eq. (8). The larger of the two length scales

approximately determines the effective screening length, κ−1
s ,

found within the FI model. The regime change of screen-
ing lengths in ionic fluids may then be understood in terms
of these two competing length scales that are equal near the
crossover point, κ̄∗D. At small κD, the correlations between
ions are dominated by electrostatics, while at large κD, the
short-range Ising correlations dominate. Importantly, even
in the regime dominated by short-range interactions, elec-
trostatics still plays a vital role, placing constraints on the
system which appear as electroneutrality and higher moment
conditions.25,30

FIG. 1. Mean field screening constant, κs, identified with the inverse decay
length of charge correlations, displays non-monotonic trend as the Debye
screening constant, κD =

√
4πρQ/T , [Eq. (5)] is increased, plotted here for

ρQ/J = 0.5/a2. The solid black line shows the predicted screening constant, κs,
in the two regimes. Note the inverse dependence of κs on T in the two regimes
[see Eq. (8)]. Near, but slightly above the regime change, the screening constant
from simulation shows an apparent scaling κsa ∼ (κDa)−1. The dashed line
shows the Debye constant κD, and the dotted line shows the temperature
scaling of the inverse Ising correlation length

√
T/(a2J) ∼ 1/lc. The dashed–

dotted line is a second inverse length scale which goes as 1/lc for small κD;
it merges with κs at the regime change κ̄∗D, which also marks the peak in the
screening constant, κ̄∗s .

At large ρQ/J [ρQ/J > d2/
(
4πa2

)
], the continuum mean

field theory breaks down, as noted by Grousson and Viot.32

One way the breakdown in the theory can be seen is through the
FI critical temperature, Eq. (6), which becomes unphysically
negative for large ρQ/J. The regime of validity can also be
cast in terms of κ̄∗s , Eq. (10),

(
κ̄∗s

)−1 > a/
√

d for validity.
This form makes clear that the breakdown occurs when the
minimum screening length for the system becomes similar to
the lattice cell size. Grousson and Viot offer a correction by
explicit treatment of the lattice,32 neglected here, and another
route to improve the theory might be a more careful treatment
of the finite size of ions. A third method to go beyond mean field
theory, the incorporation of fluctuations, was considered as the
correlation length is strongly renormalized near the critical
temperature.33,34 However, because the regimes we study are
at temperatures far above criticality, the mean field results are
not changed qualitatively. We use simulations of the FI model
to investigate screening lengths and crossovers in the regime
where the mean field theory breaks down.

SIMULATION

We perform Monte Carlo simulations of the FI model to
investigate its screening length behavior. We study parameter
ranges strictly above the FI critical point.29 We simulate a wide
range of temperatures and extract the charge–charge correla-
tion function, Gq(r), from simulations [see Fig. 2(a) for ρQ/J
= 0.5/a2]. For small κD, κD < κ∗D, the charge–charge correla-
tion functions trend purely exponentially as predicted by the
DH theory. For large κD, κD > κ∗D, oscillations develop. By
fitting the envelope of r|Gq(r)|, which has the form of a decay-
ing exponential [mean field, or large r, form of Gq(r) shown
in Eq. (4)], we can find the screening constant for a given κD.
We plot the trending of the screening constant with κD for
ρQ/J = 0.5/a2 in blue dots in Fig. 3. For small κD, agreement
between the DH theory, the continuum FI mean field theory,
and the FI simulation is excellent. As κD increases beyond κ∗D,
estimates of the screening constant from both simulations and
mean field theory begin to fall, with mean field scaling as in
Eq. (8) and simulation scaling similarly, roughly as κ−1

D near
the screening constant peak. Overall, the agreement between
the continuum mean field theory and simulation is excellent
for small ρQ/J. The mean field theory is still reasonable at
moderate ρQ/J, for example, see Fig. 4, where ρQ/J = 1/a2.

Fitting the envelope of the charge–charge correlation
function, Gq(r), works well to extract the screening constant
except when the screening constant is large. In principle, the
oscillation frequency can also be extracted by fitting a decay-
ing oscillatory function, such as Eq. (4), to simulation data
directly. However, due to constraints arising from the finite
nature of the lattice, length scales extracted from such a fitting
procedure can be error prone particularly in regimes where
the length scale is comparable with the lattice size. We instead
extract the oscillation frequency by first computing the charge–
charge structure factor from simulation. We use the standard
definition35

Sq(k) =
1
N

∑
j, l

qjql exp

(
−

2πi
L

k ·
(
rj − rl

))
, (11)
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FIG. 2. Spatial correlations in the FI model for various inverse Debye screening lengths, κD, for the parameter ρQ/J = 0.5/a2. (a) Absolute values of charge–
charge correlation functions, r|Gq(r)|, plotted on log-linear scale for various Debye constants. For κD � κ∗D, the correlations decay purely exponentially as
shown in the bottom two plots, while oscillations appear when κD � κ∗D, see the top two plots. The solid black lines correspond to the envelope of these functions
from which κs can be extracted. The dotted black line is the DH prediction for the decay of correlations. (b) Structure factors scaled by temperature, Sq(k)/T,
for various κD. j is an integer in [0, L). For small k, the structure factors scale as k2 (solid black line). For κD � κ∗D, Sq(k) plateaus when k becomes large, but
as κD increases, oscillations appear. The peak at k ∼ 1 shifts toward larger k with increasing Debye constant. The largest k value peak corresponds to the lattice
length a.

from which Sq(k) can be easily computed; see Fig. 2(b) for
some Sq(k) from simulation with ρQ/J = 0.5/a2. We then fit the
large wavelength or small-k region of Sq(k) using the inverse
quartic form of the mean field expression in Eq. (3). As men-
tioned in the section titled Model, Sq(k) contains information
about the length scales of the system, which can be extracted
from the pole of the structure factor,

k0 = ω + iκs, (12)

with κs andω being the length scales appearing in the charge–
charge correlation function, Eq. (4). Thus, fitting the small-k
form to simulation Sq(k) allows us to extract estimates of both
κs and ω from simulation.

FIG. 3. Screening constant, κs, for different extraction methods and oscilla-
tion frequency, all from simulation for ρQ/J = 0.5/a2 and compared with
theory. Solid and dashed black lines show mean field theory prediction
for screening length and oscillation frequency, respectively. Blue dots show
screening constant extracted from envelope fits of charge–charge correlation
functions [method shown in Fig. 2(a)]. Red triangles show screening constant,
while green squares show oscillation frequency extracted from small-k course
of simulation Sq(k) (see section titled Simulation). The length scales from
Sq(k) fits consistently overestimate the length scale in the small κD regime
and underestimate it in the large κD regime.

The values of κs extracted from simulation using the large
wavelength Sq(k) fits exhibit the same qualitative trends as
those extracted from charge–charge correlation fits, see Fig. 3.
Importantly, the scaling of the two regimes, κs ∼ κD when
κD � κ∗D and κs ∼ κ−1

D just above the regime changeover,
is the same between the two methods. When κD is small, the
Sq(k) fits underpredict the screening constant. Relative to the
mean field, the Sq(k) fits also predict κ∗D > κ̄∗D. In the large
κD regime, the Sq(k) fits overpredict the screening constant.
The Sq(k) fit inverse length scales are essentially shifted to the
right with respect to mean field and charge–charge correlation
fits but capture the qualitative features.

Given the qualitative agreement between values of κs esti-
mated from direct simulations and from the fitting method
described above, it is reasonable to speculate that the

FIG. 4. Screening constant, κs, displays non-monotonic trend as κD is
increased, shown here for ρQ/J = 1/a2. Solid black line is continuum mean
field theory prediction. Blue dots are screening constants extracted from the
envelope of charge–charge correlation functions, Gq(r), in simulations. The
effect of the negative T̄FI

c is visible in the slight positive curvature of the mean
field prediction when κD > κ̄∗D. Near, but slightly above the regime change,

simulation κsa ∼ (κDa)−1.
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oscillation frequencies extracted via Sq(k) small-k fits will
capture the qualitative trends exhibited by the simulations. We
compare the oscillation frequencies and screening constants
extracted from the structure factor fits, to mean field predic-
tions in Fig. 3. The oscillation frequency grows rapidly as κD

increases past κ∗D but saturates toward an asymptotic value as
κD continues to increase, in line with the continuum mean field
theory [ω̄ given in Eq. (9)].

We also simulate a range of ratios ρQ/J to extend our
results beyond the continuum mean field theory which is only
strictly valid for small ρQ/J.32 The short ranged ferromag-
netic Ising interaction, described by J, causes spins which are
alike to cluster, leading to a length scale, lc, which acts as a
molecular length scale aside from the lattice length, a. As rec-
ognized some time ago in the context of RPM models,25,30 it
is the frustration between a short-range length scale and the
Coulomb length scale that results in non-DH behavior. While
RPM models have a fixed molecular length scale, the hard
sphere size, the FI model can potentially afford tunability of
the molecular length scale, as J can be varied.

In Fig. 5, we plot the screening constant trending,
extracted from large wavelength fits of the simulation Sq(k),
for different ρQ/J ratios. We see that κ∗D changes as ρQ/J
is varied, but the same qualitative trends hold for all ρQ/J
examined here. Namely, there are two regimes, one gov-
erned by the Debye constant, and the other governed by the
inverse Ising correlation length analogous to the mean field
prediction in Eqs. (5) and (8). The scaling of κs in the two
regimes remains unchanged—κs ∼ κD when κD � κ∗D and
κs ∼ κ−1

D just after the regime changeover—despite chang-
ing the ratio ρQ/J. Thus, the two distinct regimes are robust
even beyond the validity of the continuum mean field the-
ory; within the range of parameters studied here, increasing
ρQ/J monotonically increases κ∗D. The division between the
DH and overscreened regimes can thus be controlled by tun-
ing J, as predicted in Eq. (7) and borne out in simulations in
Fig. 5.

Finally, we consider the limiting case that exists when
varying ρQ/J, namely, when J → 0. That limit allows us
to make some connection with previous work on the lattice

FIG. 5. The screening constant, κs, against κD for different ρQ/J ratios. We
extract κs here using the small-k course of Sq(k) discussed in the section
titled Simulation. Increasing ρQ/J shifts κ∗D to the right, also increasing the
maximum screening constant, κ∗s . Near but slightly above the regime change,
simulation κsa ∼ (κDa)−1 for each ρQ/J [the dotted lines show the scaling
√

T/J ∼ (κDa)−1 for each parameter set].

FIG. 6. Screening constant, κs, displays non-monotonic trend as κD [Eq. (5)]
is increased, shown here for ρQ = 1/a2 and J = 0. Dashed black line is the
Debye constant, κD, which is also the prediction of the continuum mean field
theory presented in the section titled Model when J = 0. Blue dots are screening
constants extracted from the envelope of simulation charge–charge correlation
functions, Gq(r). Note that the domain and range of this plot differ from
previous κs vs κD plots in this paper.

RPM36,37 whose short-range interaction is purely repulsive.
We find that two regimes occur in simulation for J = 0, just as
in the J > 0 case, see Fig. 6. Note that the simple FI contin-
uum mean field theory fails in this regime, predicting that the
J = 0 case is identical to the Debye–Hückel theory for all values
of κD. The simulation lattice plays a role directly analogous to
the RPM hard sphere interaction, providing a sense of finite
size to each ion.

CONCLUSIONS

The recent experimental discovery of universal scaling
of the screening length, κsa ∼ (κDa)−2, in concentrated elec-
trolytes and ionic liquids has rekindled theoretical interest in
the large κD or strong Coulomb coupling regime.23 Past the-
oretical work based on the RPM of electrolytes using closure
relations such as hypernetted chain approximations3,25 and a
generalization of the Debye charging process,26 as well as a
molecular dynamics simulation study of molten NaCl salt,4

suggest κsa ∼ (κDa)−1/2 for κD just above the peak κ∗D. Con-
sidering additional effects such as the formation of Bjerrum
ion pairs may modify the scaling to κsa ∼ (κDa)−1 within a
Poisson–Boltzmann framework.38

In this work, we focus on the properties of the FI model
well above its critical point and find that it captures important
features required to model the correlations of bulk ionic fluids.
From simulations of the FI model, we find that κsa ∼ (κDa)−1

in the strong Coulomb coupling regime. The introduction of
short length scale fluctuations affects only the temperature at
which the crossover from the DH to the oscillatory regime
occurs and leaves the scaling behavior unchanged. This scaling
is different from the universal scaling experimentally observed
in Ref. 23. However, it may be possible to alter the scal-
ing of the FI model in the overscreened regime via simple
modifications such as the introduction of defects in the lat-
tice,11 or creating asymmetry in the charge carriers, either in
magnitude or shape.39 These possibilities will be explored in
future work. We also note that while the experimental universal
scaling23 and much previous theoretical work3,25,40 place an
emphasis on the ion size as a determining factor for the strong
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coupling regime, the ion size is not as simple to interpret in
the FI model and appears to some extent through the Ising
coupling J.

In conclusion, the FI model complements other theoret-
ical techniques commonly used to describe ionic fluids, such
as mean-field Poisson–Boltzmann theories,41 integral equa-
tions,25 field theories42 or their hybrids,43 and molecular simu-
lations,4 and has the merit of reproducing the essential features
of ionic correlations relatively simply. The FI model may be
generalized to model surfaces and solvents in ionic fluids—
which are systems of great current experimental interest.19,23

Overall, the Coulomb-frustrated Ising model is an attractive
framework for the study of long-range non-DH correlations
in ionic fluids due to its simplicity and its capture of broad
qualitative trends.
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APPENDIX: METHODS

The Coulomb interaction is implemented using the Ewald
summation technique.44,45 The long-range part is precomputed
at the start of a run since the separation between all lattice sites
is fixed.28 We use periodic boundary conditions in all three
dimensions. Our simulation box has sides of length L = 32a
with a = 1 being the lattice cell length. The lattice is initialized
with an equal number of positive and negative charges. We
use cluster moves which preserve the net charge of the system
(
∑N

j qj = 0) and greatly reduce the autocorrelation times at

low temperatures, improving efficiency.29 Monte Carlo move
random numbers are generated using the PCG pseudo-random
number generator.46 Lattice trajectories were visualized using
VMD.47

We use fundamental requirements for statistical mechan-
ical electrostatic systems as a check for our simulations. The
Stillinger–Lovett second-moment (SL2) condition constrains
the long-length scale fluctuations of a Coulomb system.30 A
formulation of the SL2 condition is that the charge structure
factor tends to zero as k2 for small k.25 We have demonstrated
that our simulation produces the required trend, see in par-
ticular Fig. 2(b). In addition, the high-T energy scaling of a
Coulomb system must reduce to that of the Debye–Hückel
theory U ∼ −T−1/2.48 We confirm that condition as well.
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