
Hyperware: A General-Purpose Sovereign Cloud
Computer

Benjamin McCormick, Nicholas B Ludwig, Markus Vaas, and James Foley

Sybil Technologies AG

Abstract. Hyperware is a software platform designed to integrate all
facets of modern crypto application development. Users can run their
own services at both the interface and backend level. Corporations or
other entities can provide services in a permissionless, protocolized man-
ner. This node-based cloud computing model resolves the impedance
mismatch between onchain protocols and web services. Developers can
write apps in any programming language that compiles to Wasm and eas-
ily distribute them to nodes. The Hyperware platform includes several
components that will be described in this whitepaper: a virtual machine,
an onchain global namespace, a utility token for expanding and assigning
a value-topology to that namespace, a PKI (Public-Key Infrastructure),
a peer-to-peer networking protocol, a modular smart contract account
system, and finally a governance apparatus to distribute onchain assets
and continue development of the platform. All of these components work
in lockstep to solve the problems that have heretofore discouraged de-
velopers from embracing peer-to-peer computing.

July 16 2025
Revision 3

Table of Contents

1 Overview . 3
2 Hypermap . 4

2.1 Example Hypermap Entries . 6
3 HNS: Hyperware Name System . 7

3.1 Specification . 7
3.2 Indexing . 8
3.3 Adding Other Onchain Identity Primitives . 8

4 Hyperware OS . 9
4.1 WIT . 10
4.2 Microkernel . 13
4.3 Message Passing . 13
4.4 Capabilities-Based Security . 15
4.5 System Primitives . 17
4.6 Example Process . 17
4.7 Selected Runtime Modules . 18
4.8 Runtime Extensions . 22
4.9 Backwards Compatibility . 22

5 Package Manager . 23
5.1 Specification . 24
5.2 Package Metadata . 25
5.3 Package Manifest . 26
5.4 Hyperdrive App: App Store . 27

6 Kit . 28
7 Hypermap Advanced . 29

7.1 Top-Level Zones . 29
7.2 Name-Keys . 30
7.3 Data-Keys . 30
7.4 Extensibility . 31
7.5 Counterfactual Addresses For Hyperware Smart Accounts 31
7.6 ERC-6551 Token-Bound Accounts . 32
7.7 Scaling . 32
7.8 Review . 33

8 HYPR Token . 33
8.1 Registration . 33
8.2 Discussion . 34
8.3 Current and Future Uses . 36

9 Hyperware Governance . 36
9.1 Voting . 37
9.2 TLZ Management . 37
9.3 Progressive Decentralization . 38
9.4 Default-distro App: Governance Portal . 39

Hyperware: A General-Purpose Sovereign Cloud Computer 3

9.5 Other Duties . 39
10 A Hyperware Future . 40
11 Appendix: 3 Ways to Use Hyperware . 41

1 Overview

Cryptocurrency, specifically smart contract blockchains, triggered a nascent rev-
olution in permissionless protocols: software that allows participation by all, yet
can be shut down by none. But progress towards a fully decentralized, permis-
sionless Internet has stagnated even as specific niches like decentralized finance
flourish. We believe that this progress is constrained less by blockchain speed
and throughput as it is by an underdeveloped offchain computing substrate.

Recall the singular problem blockchains are designed to solve: preventing the
double-spending of a cryptographically-owned asset.1 The mechanism to achieve
this, now well-proven, expanded to turing-complete VMs, and replicated dozens
of times, is simple: signed transactions confirmed by a decentralized validator
set and deposited into an append-only distributed ledger.

But what operations actually benefit from an onchain transaction?
Permissionless finance obviously requires blockchains, at least at the moment

of settlement, as do operations that mutate ownership of an asset. Smart con-
tracts have proven that double-spend prevention can productively be applied
to any digital asset that requires guaranteed global consensus on the order and
provenance of operations.

Which operations do not benefit from such guarantees? For one, any action
that only requires a signature from a single public key and does not need to
be ordered: a signed message from an individual, or an API published by an
entity acting as the single source of truth. Blockchain transactions are similarly
unnecessary for actions undertaken between trusted parties, which, in fact, com-
prise a large portion of online communication. It turns out that the category of
networked operations that do not require global consensus is much larger than
the category of those that do benefit from being transactions.

Some protocols, like many in decentralized finance, function perfectly fine
with no user interaction outside their onchain transaction protocol. The user
interface for such a protocol is merely a wrapper over the smart contract deployed
onchain. There is a vast landscape of possible protocols, however, that do not
fit entirely into the purely-onchain paradigm. Forcing these protocols into this
model has led to countless failures.

Some believe that merely increasing transaction throughput by a few orders
of magnitude (no small task) can resolve the issue by allowing transactions to
be cheaply verified, even when they are not strictly necessary. We do not. There
will always be significant relative costs to placing transactions in a globally-
distributed ledger—not only monetary, but also in terms of latency, data storage,
1 The Bitcoin whitepaper describes using a distributed ledger to prevent double-spend

of Bitcoin, and subsequent cryptocurrency projects generalized this to a blockchain
preventing double-spend of arbitrary digital assets.

https://bitcoin.org/bitcoin.pdf

4 Benjamin McCormick, Nicholas B Ludwig, Markus Vaas, and James Foley

and compute overhead. Transactions will always present an impedance mismatch
and be an inferior technical solution for operations that do not require global
consensus. Until we provide a proper platform for such operations, “Web3” will
simply never outcompete “Web2”.

Hypermap+HY PR HyperwareOS

Hyperware Governance

Fig. 1. Components of Hyperware.

The goal of the Hyperware Hyperstructure2 is to present a permissionless
substrate for computing. Smart contract blockchains provide access to global
consensus state for provenance over digital assets, while Hyperware does “every-
thing else”. In this paper, we present an operating system, an onchain global
namespace, a value assignment and ranking mechanism, and the long-term gov-
ernance structure for these components.

2 Hypermap

Historically, discoverability of both peers and content has been a major bar-
rier for peer-to-peer developers. Discoverability can present both social barriers
(finding a new user on a game or chat) and technical obstacles (automatically
acquiring networking information for a particular username). Many solutions
have been designed to address this problem, but so far, the “devex” (developer
experience) of deploying centralized services has continued to outcompete the
peer-to-peer discoverability options available. Why is this?

1. Libraries such as libp2p, while effective at their goal of providing peer-to-
peer primitives, do not provide the “batteries included” identity, discoverabil-
ity, and network-effect-potential of more traditional centralized alternatives,
and can also be difficult to approach for new developers.

2. “Pure” peer-to-peer protocols still rely on hardcoded lists to bootstrap new
entrants.

3. Constructs such as distributed hash tables and CRDTs, frequently used in
peer-to-peer protocols, are complex to properly implement.

2 https://jacob.energy/hyperstructures.html

https://jacob.energy/hyperstructures.html

Hyperware: A General-Purpose Sovereign Cloud Computer 5

4. In order for a full, up-to-date snapshot of some globally-shared data to be
easy to aquire, it should be stored in a single place.
– For Hyperware, that “one place” is on a public blockchain inside a single
smart contract.
– Multiple map contracts across multiple chains can be used to scale hori-
zontally in the future while still providing a consistent interface to the global
state.
– All data necessary to bootstrap peer-to-peer interaction must be available
within this globally-shared map.
– Any “missing piece” required to complete handshakes or source peers will
result in unreliability and re-centralization.

Hypermap is an onchain key-value store inspired by dmap3 , a minimalist
onchain path-formatted key-value store. It serves as the base-level shared global
state that all nodes use to share critical signaling data with the entire network.
Like dmap, Hypermap is organized as a hierarchical path system and has mutable
and immutable keys. Several aspects of the minimal map implementation are
customized for the “namespace” use case.

A brief description:

1. All keys are strings containing exclusively characters 0–9, a–z (lowercase), -
(hyphen).

2. A key may be one of two types, a name-key or a data-key.
3. Every name-key may create sub-entries directly beneath it.
4. Every name-key is an ERC-7214 NFT (non-fungible token), with a connected

token-bound account with a counterfactual address, implemented according
to the ERC-65515 standard.

5. The implementation of a token-bound account may be set when a name–key
is created (unless parent name-key has set a “gene”: see below).

6. A name-key may optionally specify a “gene”: a token-bound account imple-
mentation that all of its child name-keys will inherit. Children of a “gene“-
specifying parent will have both their “gene‘ and their token-bound account
implementation set to the implementation specified by their parent’s “gene”.

7. Every name-key may inscribe data in data-keys directly beneath it.
8. A data-key may be mutable (a “note”, prepended with ~) or immutable (a

“fact”, prepended with !)

For a complete specification, see Advanced Hypermap in Section 7, which
goes into detail regarding token-bound accounts, sub-entry management, the use
of data-keys, and protocol extensibility. For a description of the value-assignment
mechanism that overlaps Hypermap, see Section 8 for the HYPR utility token.
3 https://github.com/dapphub/dmap
4 https://eips.ethereum.org/EIPS/eip-721
5 https://ercs.ethereum.org/ERCS/erc-6551

https://github.com/dapphub/dmap
https://eips.ethereum.org/EIPS/eip-721
https://ercs.ethereum.org/ERCS/erc-6551

6 Benjamin McCormick, Nicholas B Ludwig, Markus Vaas, and James Foley

2.1 Example Hypermap Entries

os
foo

~ip
~ws-port
~tcp-port
~net-key

bar
~routers
~net-key

hypr
baz

package
~metadata-hash
~metadata-uri

!this-is-permanent
~this-is-mutable

eth
alice

~routers
~net-key

bob
~routers
~net-key

Fig. 2. Example Hypermap.

Fig. 2 shows an example with three top-level “zones”, eth, hypr, and os. Below
those are a number of namespace entries: foo, bar, and baz. The full path for
foo’s ~ip sub-entry would be ~ip.foo.os.

In this paper, we will sometimes use the term “domain” interchangeably with
what we refer to here as a “namespace entry”. This is a useful shorthand, and
in many ways, Hypermap does mirror the role of DNS in the worldwide web.
However, the domain analogy is inaccurate if applied directly to all namespace
entries because not all namespace entries resolve to a networking protocol target.

E.g., only entries containing ~net-key are used by the HNS (Hyperware
Name System) which runs on top of Hypermap. Since entries baz.hypr and
package.baz.hypr have no data-keys to describe their status in the HNS, the
“domain” analogy breaks down for them. The design of Hypermap is generic
in the sense that many protocols are expected to share this global namespace
for different purposes. The specification of HNS itself, as a protocol operating
on Hypermap, is described in Section 3, as is the specification of the Hyperware
Package Manager, Section 5, both of which make an appearance in this example.

Hyperware: A General-Purpose Sovereign Cloud Computer 7

Entries hypr, baz.hypr, and package.baz.hypr are all NFTs, and all have
associated token-bound accounts (so are all name-keys: ‘os‘, etc.). The owner
address of a namespace entry (usually) has singular control of its token-bound
account. However, a given account implementation may contain arbitrary logic,
such as the ability for anyone to mint a sub-entry, or edit a “note” key under-
neath. A name-key may set its “gene” to a token-bound account implementation
which causes all the name-key’s subsequently minted children to use that imple-
mentation for their token-bound account implementation and “gene”.

3 HNS: Hyperware Name System

Hyperware Name System is a protocol built on top of Hypermap that acts as a
PKI for the network. HNS transforms an entry in the Hypermap namespace into
a node identity for use in the Hyperware network, where a node is an instance
of Hyperware OS, able to communicate peer-to-peer with other such nodes.
Node identities are central to the programming model of Hyperware OS. Usually
manipulated as strings in a process, a node identity is the first component of
an address, which uniquely identifies a specific process running on that node,
part of a package, published by some node. See Section 4 for definitions and
discussion.

3.1 Specification

The definition of a node identity in the HNS protocol is any Hypermap entry
that has:

1. A ~net-key note AND
2. (a) A ~routers note OR

(b) An ~ip note AND at least one of:
i. ~tcp-port note
ii. ~udp-port note
iii. ~ws-port note
iv. ~wt-port note

A sample of this protocol can be seen in Fig. 2. Two classes of nodes are
defined: direct and indirect. Direct nodes are those that publish an ~ip and one
or more of the port notes. Indirect nodes are those that publish ~routers. The
nature of direct and indirect nodes in networking is described in Section 4.7.

The data stored at ~net-key must be 32 bytes corresponding to an Ed25519
public key. This is a node’s signing key which is used across a variety of domains
to verify ownership, including in the end-to-end encrypted networking protocol
between nodes. The owner of a namespace entry/node identity may rotate this
key at any time by posting a transaction to Hypermap mutating the data stored
at ~net-key.

The bytes at a ~routers entry must parse to an array of 32-byte values. Each
32-byte value should be a keccak256 namehash that resolves to a node identity.

8 Benjamin McCormick, Nicholas B Ludwig, Markus Vaas, and James Foley

These strings should be node identities. Each node in the array is treated by
other participants in the networking protocol as a router for the parent entry.
Routers should themselves be direct nodes. If a string in the array is not a valid
node identity, or it is a valid node identity but not a direct one, that router will
not be used by the networking protocol. Further discussion of the networking
protocol specification is presented in the Section 4.7.

The bytes at an ~ip entry must be either 4 or 16 big-endian bytes. A 4-byte
entry represents a 32-bit unsigned integer and is interpreted as an IPv4 address.
A 16-byte entry represents a 128-bit unsigned integer and is interpreted as an
IPv6 address.

Lastly, the bytes at any of the following port entries must be 2 big-endian
bytes corresponding to a 16-bit unsigned integer:

1. ~tcp-port note
2. ~udp-port note
3. ~ws-port note
4. ~wt-port note

These integers are translated to port numbers. In practice, port numbers
used are between 9000 and 65535. Ports between 8000-8999 are usually saved
for HTTP server use.

3.2 Indexing

Events emitted by Hypermap are used to index map data. Hyperware OS pro-
vides all the primitives required to index effectively in a userspace application,
and the default distribution of the OS includes a process that indexes Hypermap
for the purpose of reporting HNS data to the networking protocol module.

3.3 Adding Other Onchain Identity Primitives

The HNS is not an attempt at replacing or competing with existing onchain
identity primitives such as ENS6 and Lens7. Rather, it is designed to satisfy the
public key infrastructure needs of the Hyperware network. It is of paramount im-
portance that nodes can initiate secure communication with one another without
the use of any data other than what is available publicly onchain. Peer-discovery
middlemen induce centralization and complicate networking protocols.

The structure of Hypermap means that HNS avoids competition with other
identity primitives by seamlessly integrating them. As of this paper, this has
already been done for ENS protocol. Here is a brief description of the procedure
to do so:

1. Create a contract to allow owners, and only owners, of a given identity prim-
itive to mint their corresponding name in a Hypermap namespace controlled
by this contract.

6 https://ens.domains
7 https://lens.xyz

https://ens.domains
https://lens.xyz

Hyperware: A General-Purpose Sovereign Cloud Computer 9

2. Mint and transfer the top-level namespace entry corresponding to an outside
identity primitive, lens for example.

3. If necessary, configure LayerZero, or another such cross-chain messaging pro-
tocol, to allow owners of an identity primitive on another chain to verify their
ownership on the chain that Hypermap is deployed on.

4. The final result is that the owner of, for example, myname.lens can exclu-
sively register myname.lens in Hypermap, add a ~net-key sub-entry, and
use it as their PKI entry for Hyperware.

4 Hyperware OS

This section discusses the architecture of Hyperware OS. For a more “hands-on”
description of the OS, including detailed programming examples and documen-
tation, go to book.hyperware.ai.

Hyperware OS is a process virtual machine run to operate a “node” on the
Hyperware network. At its core, the virtual machine wraps around a Wasm run-
time8 that executes all userspace code. After a node identity is registered onchain
in the HNS, the operator should boot the OS using the private key matching
the public ~net-key posted in the Hypermap during registration. Once this has
been done, if the networking details (routers, IP, etc) are properly read from the
Hypermap and matched by the runtime, that node is now “online”. Other nodes
can interact with the booted node through the Hyperware networking protocol
by reading its HNS node identity and using the data stored there.

The runtime is as simple as possible, with a maximal amount of logic ejected
to userspace. In the future, Hyperware will benefit from “client diversity” as
does a traditional blockchain: many implementations of the virtual machine9

will make the network more resilient to potential bugs and decentralize the
development process, leading to productive ossification of core features, stability,
and long-term strength. Sybil Technologies distributes the reference runtime:
Hyperdrive.

While all packaged into a single executable, the OS can productively be
described in 3 parts: a runtime, a set of runtime modules, and userspace. The
“kernel” frequently referred to in this paper is in fact just a runtime module.

The runtime is a “native” (to whatever architecture it targets, e.g., Unix, a
browser, hardware, . . .) program that manages node booting (including onchain
registration) and (generally asynchronously or in parallel) executes the runtime
modules. Runtime modules are blocks of code written at the same level of ab-
straction as the runtime itself, but designed to resemble userspace processes.
These modules are registered in the kernel as processes, meaning that they
8 Wasm is specified at https://webassembly.github.io/spec. Hyperware uses Wasm

for processes because it is a highly performant, language independent, portable, and
sandboxable compilation target.

9 The Wasm runtime is by a wide margin the most complex aspect of the OS, and at
least a dozen such runtimes exist today, written in multiple languages. This bodes
well for future Hyperware client diversity.

https://book.hyperware.ai
https://github.com/hyperware-ai/hyperdrive
https://webassembly.github.io/spec

10 Benjamin McCormick, Nicholas B Ludwig, Markus Vaas, and James Foley

can be messaged by userspace in the system-wide request-response protocol and
secured via capabilities. Finally, userspace consists of all non-runtime-module
processes executed virtually by the kernel. Userspace processes are always com-
piled to Wasm and comport to the Wasm Component Model10. Userspace Wasm
code must be compiled against a Wasm Interface Type (WIT) file as used in the
Wasm Component Model which defines the common set of “system calls” and
types afforded to userspace processes by the kernel.

Hyperdrive, the reference implementation, is written in Rust as are all the
runtime modules. It also comes with a number of pre-installed userspace pack-
ages that perform critical tasks. In the future, other entities will likely seek to
distribute their own implementations that may contain different pre-installed
packages or even different runtime modules.

eth:distro:sys
http-client:distro:sys
http-server:distro:sys
kernel:distro:sys
kv:distro:sys
net:distro:sys
state:distro:sys
terminal:distro:sys
timer:distro:sys
sqlite:distro:sys
vfs:distro:sys

Fig. 3. The full list of runtime modules in Hyperdrive (the reference implementation)
as of this writing.

4.1 WIT

Wasm Interface Type11, or WIT, is a language to describe types and function
definitions that can be used in a Wasm component. Hyperware OS uses a single
WIT file12 to define the types shared across all processes and provide a number
of functions. The functions fall into three categories:

1. Self-configuration
2. Capabilities management
3. Message I/O

10 https://component-model.bytecodealliance.org
11 https://component-model.bytecodealliance.org/design/wit.html
12 https://github.com/hyperware-ai/hyperware-wit

https://component-model.bytecodealliance.org
https://component-model.bytecodealliance.org/design/wit.html
https://github.com/hyperware-ai/hyperware-wit

Hyperware: A General-Purpose Sovereign Cloud Computer 11

WIT files are organized into “worlds”. All types and functions provided to
Hyperware processes are currently stored in one world labeled lib. In a separate
world, process-v1, a single function named init is exported, which means that
all Wasm apps that use the process-v1 world must implement that function.
The Hyperware kernel starts executing a process by calling the process’s init.

WIT Types Discussion of the types presented here will occur throughout the
rest of the OS description. Some types in hyperware.wit are omitted for brevity
or because they are discussed later.

// JSON is passed over Wasm boundary as a string.
type json = string;

type node-id = string;

type context = list<u8>;

record process-id {
process-name: string,
package-name: string,
publisher-node: node-id,

}
record address {

node: node-id,
process: process-id,

}
record lazy-load-blob {

mime: option<string>,
bytes: list<u8>,

}

Fig. 4. Basic types in hyperware.wit

An address globally identifies a process running on a particular node.
A process-id identifies a particular process by its publisher, package name,

and process name.

WIT Host Functions WIT host functions are implemented by the kernel. The
Wasm Component model allows these functions to be called by processes.

12 Benjamin McCormick, Nicholas B Ludwig, Markus Vaas, and James Foley

// self-configuration
print-to-terminal()
set-on-exit()
get-on-exit()
get-state()
set-state()
clear-state()
spawn()

// capabilities management
save-capabilities()
drop-capabilities()
our-capabilities()

// message I/O
receive()
get-blob()
send-request()
send-requests()
send-response()
send-and-await-response()

Fig. 5. Host functions in hyperware.wit

WIT Process Format The process format enforced by hyperware.wit is re-
markably simple: it imports the types and functions defined in the main library
world, and requires processes to implement a single function: init.13

world process {
include lib;
export init: func(our: string);

}

Fig. 6. Process world in hyperware.wit

init serves as the entry point for a process. The kernel begins execution of a
process by calling init. When init returns, the process will cease execution.14

13 This does not preclude processes from implementing other functions.
14 All processes are single-threaded. To perform parallel computation, one can spawn

child processes.

Hyperware: A General-Purpose Sovereign Cloud Computer 13

4.2 Microkernel

Every aspect of the operating system, including the kernel itself, comports to a
set of messaging rules defined by the microkernel15 which is responsible for five
things:

1. Using a Wasm runtime16 to execute compiled processes that implement the
Hyperware WIT standard, where execution includes managing their memory
usage.

2. Implementing the host functions, exposed to all processes, defined in Hyper-
ware WIT standard.

3. Implementing the kernel API that allows processes with kernel-messaging
capabilities to perform aspects of process management.

4. Passing messages between all processes including to/from the kernel itself.
5. Enforcing messaging capabilities.

Messaging capabilities are a subset of the capabilities security model defined
by the OS, issued by the kernel process, kernel:distro:sys. Each process can
mark itself as either public or private at instantiation. Public processes can
be messaged by any other process. Private processes, as enforced by the kernel,
require that the message source holds their messaging capability. See the discus-
sion of capabilities in Section 4.4 for details on their use and how capabilities
apply to processes running a remote node.

As of this writing, the kernel runtime module in Hyperdrive fits into about
2,500 lines of Rust code.

The kernel is responsible for maintaining backwards compatibility. If a pro-
cess was written for an older version of the kernel (which is determined by the
version number of the WIT file it implements), newer kernels must store that
WIT version and match it to the process. If data structures in the WIT file
change between versions, the kernel is responsible for translating between for-
mats. The current version of the WIT file is 1.0.0. Backwards compatibility will
be permanently maintained for all subsequent versions.

4.3 Message Passing

A message between two Hyperware processes is either a request or a response.
A message has a single source address and a single target address.
15 A microkernel architecture is ideal for a “Wasm OS” because it allows a max-

imal amount of system logic to live in Wasm itself, allowing system code to
experience all the safety and conveniences afforded to userspace processes. See
https://wiki.osdev.org/Microkernel

16 Hyperdrive uses Wasmtime.

https://wiki.osdev.org/Microkernel
https://wasmtime.dev

14 Benjamin McCormick, Nicholas B Ludwig, Markus Vaas, and James Foley

record request {
inherit: bool,
expects-response: option<u64>,
body: list<u8>,
metadata: option<json>,
capabilities: list<capability>,

}
record response {

inherit: bool,
body: list<u8>,
metadata: option<json>,
capabilities: list<capability>,

}
variant message {

request(request),
response(tuple<response, option<context>>),

}

Fig. 7. Message type in hyperware.wit

Messages are produced and consumed by Hyperware processes.
If the node identity indicated in the target address matches that of the

local kernel or is simply the string our, the message is routed directly through
the kernel to the target (assuming the source has the capability to message the
target or the target is public). Otherwise, the message is routed through the
networking runtime module, net:distro:sys, to the remote node indicated.

Ordering of messages between a given source and a given target is enforced
by both kernel and networking protocol. Messages are not otherwise ordered,
meaning that if process A sends messages 1, 2, 3 to process B, and process B
sends messages 4, 5, 6 to A, no guarantees are enforced other than that process
B will receive messages 1, 2, 3 in that order and process A will receive 4, 5, 6 in
that order. If process C sends message 7 to A, it may be received before 1, after
3, or somewhere in between.

Message delivery is not guaranteed. If a message targets a local process, the
target may crash or the kernel may suspend execution between message creation
and delivery. Far more treacherous is the delivery of messages to remote pro-
cesses. Nodes may go offline, experience network congestion, or otherwise drop
incoming messages.17 To this end, two error modes are baked into Hyperware
message passing: offline and timeout.

Requests can be sent at any time, while responses must target a process that
has a matching outstanding request. A request is outstanding if:
17 Computer networking, being a fundamentally physical process, is impossible to ef-

fectively abstract over without failure modes because the physical world imposes
them.

Hyperware: A General-Purpose Sovereign Cloud Computer 15

1. It expects a response
2. Its timeout has not expired

Every request that expects a response must set a timeout value, measured in
seconds. The kernel is responsible for returning a timeout error to a request
that expects a response and does not get matched to one within the number of
seconds declared.18

The offline error type is only returned by net:distro:sys. It may be re-
turned if the node that a request targets is definitively unreachable. This may
occur if a direct node’s networking information in HNS is invalid, an indirect
node has no routers, a node refuses all networking protocol connections / does
not comport to protocol, or any other such immediate error. In practice, “offline”
and “timeout” can usually be treated the same way: by a combination of alerting
the program user and retrying the message.

Protocols for retrying a message, particularly to a remote process, are left to
userspace. Different applications are best served by different retry strategies: a
one-off message may be awaited in a blocking fashion, surfacing an error to the
sender’s UI. A message that is part of a large data transfer may not expect a
response at all, instead relying on the final message in the transfer to await a
response. The networking protocol’s role as a general-purpose messaging system
means that it must support all of these use cases and more.

4.4 Capabilities-Based Security

Hyperware OS uses capabilities19 to enable sensible security between both userspace
processes and runtime modules. Security between programs is directly related to
the sovereignty goals of the OS: a user must be able to install a program without
needing to evaluate its source code or blindly trust its developer. Wasm programs
are sandboxed, but have access to powerful tools including networking, memory,
CPU, and disk space—not to mention the possible secrets they contain (consider
a wallet program). Not only must these tools be granted to programs on a case-
by-case basis, but without some form of control between sandboxed programs,
the sandbox becomes pointless, as any power or secret knowledge granted to a
given program could be accessed by other programs!
18 Timeouts must be viewed as a lower bound, as in, the kernel will not return a timeout

error for at least X seconds. The upper bound cannot be guaranteed.
19 Capabilities are “unforgeable tokens of authority”, validated by the kernel, that allow

processes to acquire privileges both at the runtime and userspace level. See the paper
“Capability Myths Demolished” for a good introduction to the topic.

16 Benjamin McCormick, Nicholas B Ludwig, Markus Vaas, and James Foley

record capability {
issuer: address,
params: json,

}

Fig. 8. Capability type in hyperware.wit

Capabilities are signed by the local kernel’s ~net-key to convert them into
unforgeable tokens of authority. Processes don’t need to concern themselves with
verifying signatures. Instead, the kernel filters out local capabilities that are
not properly signed. If a process is in possession of a capability, it may send
it to another process. Remote capabilities—capabilities created by a different
kernel—are not verified. Why not? If an invalid remote capability is created and
passed in a message, the holder will be alerted to its invalid nature if/when the
holder tries to use it.

Software written on Hyperware OS will often benefit from declaring a set of
capabilities desired at the time of install (see further discussion in Section 5).
Many of the built-in runtime modules distributed with the OS, including the
kernel itself, have a capabilities protocol. The kernel’s capabilities protocol is
part of the OS specification because it applies to every process and is the bedrock
security model of the OS. It is also very simple:

1. Upon instantiation, every process is given its own messaging capability.
2. Every process may mark itself as public.
3. A messaging capability is defined as a capability with the issuer field set to

the process in question, and the params field set to the string "messaging"20

4. If a process is public, the kernel will pass any message to it. If not, the
kernel will check that local processes sending requests to this process are in
possession of the messaging capability.

Note that remote processes are not filtered by messaging capabilities. Be-
cause other nodes could run modified runtimes that spoof such information as
process names, it does not make sense to filter by process name for a remote
message. Instead of using messaging capabilities to filter remote processes, a pro-
cess instead may decide whether or not it accepts messages from remote sources
in general, and then filter by the identity of the source node which cannot be
spoofed. The situation may change with the advent of trusted computing, since
remote nodes can be guaranteed to be running an unmodified runtime.

20 Quotation marks included here to produce valid JSON, as is best practice for the
params field.

Hyperware: A General-Purpose Sovereign Cloud Computer 17

4.5 System Primitives

Hyperware OS manages four primitives via runtime modules:

1. Networking: sending encrypted messages between nodes using permanent
cryptographic identities.

2. Data Persistence: writing to disk with the option to use remote backup
systems.

3. Global Consensus State: integrating with blockchains to read data and write
transactions.

4. Web: HTTP client and server.

The commonality between these four items is the requirement for I/O. There-
fore, they cannot be built as userspace Wasm processes. Instead they are written
as runtime modules: chunks of code at the same native level of the runtime and
specially registered as processes in the kernel, which is itself a runtime module.

Networking, data persistence, blockchain access, and HTTP read/write are
all presented to userspace processes as a request-response API between a runtime
module and the process using the primitive. See Fig. 3 for a full list of the
process IDs that present these primitives. The API for a given runtime module
included in the distro package is part of the set of interfaces grouped within
the Hyperware OS versioning system. The OS uses a single semantic versioning
number to indicate breaking and non-breaking changes to these APIs, the kernel,
the HNS/Hypermap onchain protocols, and the networking protocol. This is
covered further in the discussion of backwards compatibility in Section 4.9.

A few not-strictly-necessary but useful I/O primitives are also presented as
APIs via runtime modules. These are: a terminal, a timer, and the advanced
data persistence options of SQLite, a key-value store, and a virtual filesystem.

Hyperware OS can expose new primitives at the runtime level via extensions,
covered in Section 4.8.

4.6 Example Process

Now that the OS has been described in the abstract, and before we dive in to
the specific designs of various runtime modules, it may be helpful to provide a
code sample showing what a process actually looks like.

18 Benjamin McCormick, Nicholas B Ludwig, Markus Vaas, and James Foley

wit_bindgen::generate!({
path: "wit",
world: "process-v1",

});

struct Component;
export!(Component);

use crate::hyperware::process::standard::print_to_terminal;

impl Guest for Component {
fn init(our: String) {

print_to_terminal(0, "hello from a process");
print_to_terminal(

0,
&format!("our process-id: {our}")

);
}

}

Fig. 9. A process implemented in Rust.

By generating bindings from hyperware.wit, a process acquires a set of types
and functions from the langauge in which it is written. The types and functions
generated are often cumbersome to use directly due to their basic nature—in
practice nearly all processes will use a library written for their particular lan-
gauge that smooths over the WIT interface and provides helper functions, type
implementations, and so on.21 To generate WIT bindings, it is merely required
to import hyperware.wit and use the guest language’s tooling, in the case of
this example wit-bindgen22 for Rust.

4.7 Selected Runtime Modules

This section describes a number of runtime modules of critical importance.

Virtual Filesystem: The operating system ships with vfs:distro:sys, a
module that presents a standard filesystem API accessible to all processes with
the capability to message it. Directories and files created in the VFS are saved
on the host machine’s filesystem. All I/O is mediated by the VFS, allowing
processes to abstract away management of filesystem resources.
21 As of this writing, most processes have been written in Rust and an extensive li-

brary of this description has already been written, available at https://github.com/
hyperware-ai/process_lib

22 https://github.com/bytecodealliance/wit-bindgen

https://github.com/hyperware-ai/process_lib
https://github.com/hyperware-ai/process_lib
https://github.com/bytecodealliance/wit-bindgen

Hyperware: A General-Purpose Sovereign Cloud Computer 19

All processes that wish to persist data locally between boots will use ei-
ther the VFS or another runtime module that writes to disk, which may be an
extension or one of the default-distribution’s SQLite or key-value store modules.

Networking: This runtime module is the part of the OS that implements the
Hyperware networking protocol. This module is somewhat special: in the kernel,
messages with a target that contains a node identity other than that of the
kernel are all routed to net:distro:sys. Once a message is passed to the net-
working module, it is routed to the target node using the information available
in the Hyperware Name System. For this reason, the networking module must
be made aware of the current onchain state of the HNS.

HNS updates are given to net:distro:sys using a request API made avail-
able to processes that have messaging capabilities to it. Note that messaging
capability to net is only required to send configurational messages, and is not
required to simply send networked messages: those are handled through the ker-
nel. Note also that as the HNS state grows, it will become prudent to not load
the entire state into the networking module, but rather to dynamically query the
state as networking information is required for accessing new nodes or updating
stale data from known ones.

The networking protocol itself will not be fully specified here23. However,
some key aspects:

– The protocol exclusively uses information available onchain, including IP
addresses, ports, and router nodes, to facilitate message-passing. See the
description of HNS in Section 3.

– Direct nodes publish their routing information onchain. Indirect nodes pub-
lish a set of routers who facilitate message-passing for them. This is analogous
to STUN+TURN in WebRTC. A router may be able to facilitate a direct
connection for indirect nodes in a STUN-like manner.

– Networking may occur across many underlying transport protocols. The
specification of HNS in the Hypermap allows for a node identity to publicize
the port to be used for each transport protocol that node supports. The run-
time is responsible for implementing each protocol that a node broadcasts.
In practice, nodes will mostly use TCP for direct communication and routers
will support a variety of protocols used by special-purpose nodes (such as
mobile devices or nodes running in-browser).

– Messages are end-to-end encrypted using a Noise protocol24 where each node
has a static public key in their Ed25519 key published onchain, the cipher
function is ChaChaPoly, and hash function is BLAKE2s. The XX pattern is
used for handshakes.25

– Message-passing in a networked context aims to be as similar as possible to
the local context. However, the offline and timeout error-cases together cover
the inescapable realities of networking.

23 See https://book.hyperware.ai/system/networking_protocol.html
24 http://www.noiseprotocol.org/noise.html
25 This is described in Noise as “Noise_XX_25519_ChaChaPoly_BLAKE2s”.

https://book.hyperware.ai/system/networking_protocol.html
http://www.noiseprotocol.org/noise.html

20 Benjamin McCormick, Nicholas B Ludwig, Markus Vaas, and James Foley

– There are no ACKs at the Hyperware protocol level: if the underlying trans-
port protocol confirms delivery, failure to do so can become an offline error.
Otherwise, the request-response pattern must be used to confirm message
delivery.

HTTP Client & Server: Web access is a critical part of many programs that
run on Hyperware. A built-in HTTP client module allows processes to ingest
data from the web. The HTTP server module allows processes to serve data to
the web, either statically by sending a payload to be served for a given path,
or dynamically by requesting the server module to forward incoming HTTP re-
quests to the process. Both modules present a request-response API (documented
elsewhere).

Most programs that present an interface to the node user do so through
a combination of static and dynamic HTTP server path bindings. All paths
bound by a process are prefixed with the process-id, in order to remove the
possibility of collisions or imposter resources. Further, paths may be bound as
“authenticated”, meaning that access will require a JSON Web Token (JWT)
given via password login to the node. Once the token is acquired via login, a
user may access any authenticated path served by processes on the node.

This raises a subtle security issue: if a process serves an API allowing the
user to perform various actions over HTTP (as is quite common), other pro-
cesses running on the same node can easily access the API by serving a frontend
JavaScript file of their own, which can fetch content from any authenticated
path on the node. This circumvents the capability-based security model applied
to inter-process communication and suddenly shifts the trust assumptions for all
software installed on a node that acquires the capability to message the HTTP
modules.

Rather than allow this escalation of trust assumptions, the HTTP server pro-
vides a special mechanism to serve authenticated paths that are only accessible
at a subdomain. The security model of the browser is thus leveraged to generate
a new JWT for the subdomain URL, required for access to the paths at the
subdomain and disallowing client access from the base domain. Users may then
login at the subdomain with the same password as the base node server and
generate a new token in their browser. We call this model “Secure Subdomains”.
Processes that serve sensitive HTTP APIs for user interfaces are encouraged to
use Secure Subdomains to properly sandbox these operations away from other
software running on the user’s node.

ETH RPC: The OS includes an Ethereum (and EVM-compatible chains) in-
dexing runtime module, eth:distro:sys, which provides read and write access
to blockchain data. This module can connect directly to WebSocket RPC end-
points or relay through other Hyperware nodes, forming a potential chain of
relays.

The module implements standard Ethereum JSON-RPC API methods, sup-
porting operations such as querying block data, retrieving account balances, esti-

Hyperware: A General-Purpose Sovereign Cloud Computer 21

mating gas costs, and sending transactions. Processes interact with this module
through a request-response API, typically using a Provider struct that encap-
sulates chain-specific details and request handling.

Optional .eth_providers and .eth_access_settings JSON files in the
node’s home folder may be used to configure the module. The former allows
users to specify their preferred RPC endpoints, relay nodes, and chain-specific
settings, and the latter controls whether other nodes may use this node as a
provider with potential allow/deny lists. The configuration can also be modified
at runtime through the module’s API, enabling flexible provider management.

The module supports both one-time requests and subscriptions, particularly
useful for monitoring real-time events specific log entries or Hypermap note keys.
Subscriptions are managed through unique identifiers, allowing processes to filter
and unsubscribe from event streams as needed.

eth:distro:sys also integrates with Hyperware-specific functionalities, such
as querying the Hypermap contract, which is central to Hyperware’s naming and
identity system. This allows processes to interact with Hyperware-specific on-
chain data seamlessly.

let node = namehash("node.foo.os");
let (tba, owner, note) = provider.hypermap_get(&node)?;

The module acts as a relay and subscription manager for Ethereum JSON-
RPC requests and responses. Processes may use helper functions and structs to
format requests according to the Ethereum JSON-RPC specification26.

eth:distro:sys handles maintenance of subscriptions, managing provider
connections, and facilitating the routing of Ethereum data between Hyperware
nodes, allowing processes to have direct control over their Ethereum interactions
while benefiting from the module’s network management capabilities, including
the ability to relay requests through other nodes when direct RPC access is
unavailable or not yet configured.

This design facilitates the development of decentralized applications that can
efficiently interact with global blockchain networks, even in constrained peer-to-
peer environments. It allows for unique scaling possibilities:

– Applications can default to public endpoints while allowing users to easily
switch to their own nodes.

– Nodes without direct RPC access can relay through peers, distributing net-
work load.

– Multi-chain applications can be built with a unified interface, simplifying
development across different EVM-compatible networks.

By providing this flexible and powerful interface to Ethereum and other EVM
chains, Hyperware OS enables developers to create robust blockchain-integrated
applications while giving users control over their blockchain access points.
26 https://ethereum.github.io/execution-apis/api-documentation/

https://ethereum.github.io/execution-apis/api-documentation/

22 Benjamin McCormick, Nicholas B Ludwig, Markus Vaas, and James Foley

SQLite, KV-Store: In addition to the VFS, the OS provides SQLite and
key-value store runtime modules. These modules serve as high-performance disk
storage options for processes that require persistence. Each module has a request-
response API (documented elsewhere) exposing their respective operations. Both
SQLite and KV-store structure requests such that processes with the default
messaging capability may create and access only their own tables. However, the
capability to read or write a database can be shared from one process to an-
other, enabling extensibility. Of course, processes may use other storage options
designed in userspace or as runtime extensions.

4.8 Runtime Extensions

Wasm is an excellent compilation target for processes. Processes are naturally
sandboxed and cross-platform. However, there are also costs associated with
Wasm. For example, not all libraries can be compiled to Wasm and hardware
support for accelerators like GPUs is still bleeding edge. Extensions supple-
ment and compliment Hyperware processes, removing these constraints, while
maintaining the advantages associated with kernel-provided services, e.g., the
request/response system.

Extensions are simply WebSocket clients, written in any language, that run
natively alongside Hyperware OS and connect to a paired process. The paired
process serves as the interface between the extension and the rest of the Hyper-
ware system.

Extensions can be written in any language and can use any library, since an
extension is just a native program that can connect to Hyperware as a WebSocket
client and that implements a certain protocol.

The downside of extensions is that they are not as easy for users to install
and use. Since they are native, rather than Wasm, they will not run on arbitrary
systems. They are also not as easy to distribute as packages. Therefore only
sophisticated users should be expected to run extensions, since they will either
need to compile them themselves or set up and maintain an additional program
running next to Hyperware.

4.9 Backwards Compatibility

No backwards-incompatible change will be allowed in a subsequent version. The
surface area presented by the OS for the purpose of backwards-compatibility is
defined as:

– The networking protocol
– The request-response API for each runtime module listed in Figure 3
– hyperware.wit and the kernel-level implementation of the host functions
– The on-disk footprint of runtime modules that use disk, along with the en-

crypted keyfile used by the OS to store the networking key and JSON Web
Token used for authenticating of node-served frontends.

Hyperware: A General-Purpose Sovereign Cloud Computer 23

A number of userspace packages included in the reference distribution must
also be backwards-compatible in practice due to the inconvenience created by
breaking changes. This includes (but is not limited to) app-store, hns-indexer,
homepage, and terminal.

5 Package Manager

Like HNS, the Hyperware Package Manager is a protocol deployed on Hypermap.
It is another protocol critical to the operation of Hyperware OS. As described
in Section 4, the userspace presented by the OS is comprised of processes, which
are bundled into packages. There is no kernel-level method for managing the
packages installed in a node. Rather, userspace programs with the required ca-
pabilities must save packages in the virtual filesystem and prompt the kernel to
start running certain processes.

If a process has the necessary capabilities, it may create requests to and
receive responses from kernel:distro:sys like any other process. The kernel
specifies a request type that includes commands relevant to managing processes.
Programs that wish to “install” and “uninstall” processes merely submit these
requests. These programs must also have capabilities to access the virtual filesys-
tem, such that they can create new top-level directories formatted in such a way
that the kernel can access compiled .wasm files that contain a single process.

By convention, packages are stored in a .zip file with the full name of the
package <package-name>:<publisher-node-id>, e.g., for a chat app chat pub-
lished by template.os, the full name of the package is chat:template.os. The
top level of the zipped directory contains a pkg directory and optionally a direc-
tory for the source code of each process defined in the pkg directory. The pkg
directory defines processes by:

1. Containing a .wasm file, the name of which matches the process name
2. Optionally declaring the process in a file named manifest.json, which de-

fines the processes in the package that should be run upon installation and
when a node with this package installed is first booted.

pkg may also contain a scripts.json file which defines a list of processes
that can be run as scripts. Scripts are merely processes that, by convention, can
be executed from the system terminal, run for some period of time, and, before
exiting, optionally return a final response, which the terminal may print.

It is important to note that all of the above logic exists outside of the kernel
and runtime. A package’s directory, metadata, and manifest are all interpreted
by userspace code and boiled down to a series of kernel commands including
InitializeProcess, RunProcess, and KillProcess. Of course, Hyperware OS
would not be very useful without this logic, and so Hyperdrive comes with a
combination app store and package manager called app-store:sys. Note that
the publisher name, sys, is not a node identity. The publisher value in a package
name is not enforced by the kernel. It is accepted uncritically, and it is again
the responsibility of the userspace package manager to assert a valid publisher
if desired.

24 Benjamin McCormick, Nicholas B Ludwig, Markus Vaas, and James Foley

5.1 Specification

The userspace app store/package manager uses an onchain protocol running on
Hypermap to enable app discoverability and ranking. The definition of a package
(interchangeably called an “app”) in this protocol is any Hypermap entry that
has both of the following sub-entries:

~metadata-hash, ~metadata-uri.
The publisher name of a package is the parent-parent entry. The package

name is the last path item in the parent entry.
A ~metadata-hash entry must contain 32 big-endian bytes corresponding to

a SHA-256 hash of the metadata.json file used to install a package.
A metadata-uri entry must contain a UTF-8 string: a Uniform Resource

Identifier (URI) indicating where the metadata file can be found (which, when
hashed, matches ~metadata-hash).

os
foo

~ip
~ws-port
~net-key
foos-app

~metadata-hash
~metadata-uri

hypr
bar

baz
~metadata-hash
~metadata-uri

bam
~net-key
~routers
~metadata-hash
~metadata-uri
boozle

~metadata-hash
~metadata-uri

Fig. 10. Example Hypermap with multiple packages present.

In Fig. 10 there are 4 packages present: foos-app:foo.os, baz:bar.hypr,
bam:bar.hypr, and boozle:bam:bar.hypr. Note that the parent path from a
valid package sub-entry contains the entire package name including publisher.
Note also that a publisher does not need to be a valid node identity as defined
in the HNS protocol, though in practice it likely will be. A single publisher
providing multiple packages can do so by minting sub-entries corresponding to

Hyperware: A General-Purpose Sovereign Cloud Computer 25

those packages’ names. Lastly, a package may also itself be a node identity as
demonstrated in bam:bar.hypr. This is a good example of how protocols in
Hypermap’s global namespace interact and overlap with one another.

5.2 Package Metadata

The value of a package’s ~metadata-uri must be some kind of resource serving
metadata.json, a file that must hash to ~metadata-hash. If these requirements
are met, a user may use metadata.json to gather information about a package.

{
"name": "template",
"description": "a description of the package",
"image": "a URL to an image file",
"properties": {

"package_name": "template",
"current_version": "0.1.0",
"publisher": "template.os",
"mirrors": [

"template.os",
"mirror-node-1.os",
"mirror-node-2.os",
"https://my-site.com/my-package.zip"

],
"code_hashes": {

"0.1.0": "abc"
},
"wit_version": 1,
"dependencies": []

},
"external_url": "a URL to a project website",
"animation_url": "a URL to an animation file"

}

Fig. 11. A metadata file.

The structure of metadata.json is designed to match that of the ERC-721
metadata spec such that packages can be ERC-721 NFTs.

The mirrors field is an array of strings that should either be HNS node iden-
tities or URIs that resolve to the zipped package. Mirror nodes must configure
themselves to host a package using their App Store program.

Note that the top-level name field and package_name in properties need
not match. The former may be a descritive user-facing name while the latter
must match the actual package name to be used by the OS.

26 Benjamin McCormick, Nicholas B Ludwig, Markus Vaas, and James Foley

All fields are required but may be left empty other than package_name and
publisher, which are required to have values.

If current_version, code_hashes, or mirrors are left empty, users will
likely be unable to download the package, because a downloaded package is
verified by hashing the zipped file and comparing it to the desired version’s
entry in code_hashes.

5.3 Package Manifest

In the pkg directory of a package, a developer may write a manifest to program-
matically define how a package should be installed and save it as manifest.json.
If this file is not present, the package will not be installable. The manifest is a
JSON array where each element is a description of a process that must be in-
stantiated upon install and subsequent boots of the node.

[
{

"process_name": "chess",
"process_wasm_path": "/chess.wasm",
"on_exit": "Restart",
"request_networking": true,
"request_capabilities": [

"homepage:homepage:sys",
"http-server:distro:sys",
"net:distro:sys",
"vfs:distro:sys"

],
"grant_capabilities": [

"http-server:distro:sys"
],
"public": true

}
]

Fig. 12. A manifest file.

All fields are required.
A package manifest is interpreted in userspace by a program such as (but not

limited to) the default package manager in order to instantiate any and all pro-
cesses within a package that are intended by the developer to start upon package
install. The manifest contains an array of objects, each of which corresponds to
a process in the package.

Hyperware: A General-Purpose Sovereign Cloud Computer 27

process_name sets the name of the process and process_wasm_path allows
the developer to specify the path to the WebAssembly binary file for the process,
relative to the pkg directory.

The on_exit field sets the behavior of the process when it exits. There are
three possible behaviors:

1. "None" - The process is not restarted and nothing happens.
2. "Restart" - The process is restarted immediately.
3. "Requests" - The process is not restarted, and a list of requests set by the

process are fired off. These requests have the source and capabilities of
the exiting process.

Documentation and examples of this behavior, along with some subtleties
regarding process crashes, can be found in the Hyperware Book27.

The request_networking, request_capabilities, grant_capabilities,
and public fields control the process’s networking and capabilities, and whether
or not the process should be publicly visible. request_networking and public
are booleans that set, respectively, whether the process may communicate with
other nodes and whether the process may be communicated with by other pro-
cesses whether or not they have a messaging capability object for the process. The
messaging capability object refers to the kernel’s capabilities protocol described
in Section 4.4.

Finally, request_capabilities and grant_capabilities are arrays of ca-
pability objects serialized in JSON that the process being installed expects to
receive and grant. The userspace program that interprets a manifest must itself
own a capability in order to honor the capabilities in the manifest. Manifests
should only request capabilities that are necessary for program execution. In the
case of the package manager, a user will be notified and expected to manually
approve the capabilities given to a newly installed package’s processes. Granted
capabilities are generated from the process being instantiated. The shorthand
version of a kernel-mediated messaging capability is simply the string version
of the process-id for which messaging is being requested or granted, seen in
Fig. 12.

5.4 Hyperdrive App: App Store

As noted, Hyperdrive comes with the App Store. This package is named app-store:sys.
The main process, main:app-store:sys, indexes Hypermap to identify pack-
ages onchain, manages the installation of packages using kernel commands, and
presents a web UI for a node operator to browse, install, and manage packages
(generally labeled as “apps” in the frontend).

The App Store will also use HYPR to enable ranking and filtering of avail-
able apps (see discussion of HYPR in Section 8). A common failure mode of
distributed networks is that content becomes saturated and global curation is
impossible without re-centralization. In the case of an app store, this manifests
27 https://book.hyperware.ai

https://book.hyperware.ai

28 Benjamin McCormick, Nicholas B Ludwig, Markus Vaas, and James Foley

as copycat apps, low-effort scams, and a lack of discoverability for even very
popular and widely-installed apps. Registering HYPR (see Section 8.1) with
namespace entries that are packages published in Hypermap allows users to:

1. Only display apps that have a certain amount of value assigned to them,
filtering out discarded tests and spam, and

2. Have a metric to compare apps against one another, allowing one to compare
two similarly-named apps and easily see which is more widely adopted in the
peer-to-peer network.

This basic filter-and-sort mechanism repeats itself across all protocols in Hyper-
map. Since each node in the network can directly index and apply algorithms
to the namespace, different implementations of software can filter-and-sort using
different paramters customized to user preference and use-case.

6 Kit

Kit is the CLI (command-line interface) development toolkit for Hyperware. It
provides a variety of tools, including but not limited to:

– new: Creates packages from templates
– build: Builds packages by compiling processes within
– start-package: Installs and starts a built package on a node
– boot-fake-node: Runs “fake” temporary development nodes
– boot-real-node: Runs a node with a given “home” directory
– run-tests: Runs user-defined tests on a network of “fake” nodes
– publish: Publish a package on Hypermap

Kit aims to provide developers with every tool required to go from idea to
finished project. For example, a developer can use kit new to create a template,
iteratively develop, build, and test using a combination of an IDE, kit build,
kit start-package, and kit boot-fake-node. Finally, use run-tests to en-
sure stability of the project going forward and publish to distribute it!

Kit’s built-in templates help newcomers learn by giving them working ex-
amples so they can quickly begin experimenting. They also demonstrate best-
practices.

Kit makes use of Hyperware’s HTTP server RPC endpoint to interact with
Hyperware. As such, kit is restricted to localhost only. However, kit connect
allows remote development as long as developers have ssh access to the remote
machine. kit connect showcases a strategy employed throughout kit: when
tools already exist, make use of them by wrapping them in an easy-to-use way.
Here, connect uses ssh tunneling to send the kit request securely to the remote
machine. As such, developers can work on remote Hyperware nodes with the
same ease that kit affords for local development, but security is not compromised
for users.

Hyperware: A General-Purpose Sovereign Cloud Computer 29

7 Hypermap Advanced

As described in Section 2, Hypermap is an onchain hierarchical key-value store.
Keys in the map come in three varieties: “name”, “note”, and “fact”.

Each name entry is an ERC-721 NFT. The entry NFT is minted with an
ERC-655128 token-bound account. This token-bound account, or TBA, is the
only address which is permitted to create sub-entries beneath the associated
name-key.

Note and fact entries within Hypermap may store data in their memory slot
within the map. Notes are mutable, while facts are immutable once set. They
may not have sub-entries.

Combining these properties allows for the creation of advanced permission-
ing systems within Hypermap, allowing the namespace as a whole to become
a tapestry of sub-namespaces, each with unique properties. For example, the
process by which HNS integrates with existing onchain identity primitives (de-
scribed in Section 3.3): an entry is deployed with custom logic (using cross-chain
messaging protocols if necessary) that restricts sub-entry creation to only wallets
with the matching onchain asset for the sub-entry they are posting a transaction
to mint.

7.1 Top-Level Zones

In data structure terminology, Hypermap is a tree, and thus has a “root” node.
The root node is not particularly interesting, and sits immutable, with no cus-
tom logic, upon protocol deployment. And, given that a tree can be recursively
defined, any entry deeper in the tree can be arbitrarily treated as a “root” node
for the tree beneath it. This intuition of recursive trees is important for under-
standing both “how” and “why” entries “govern” the entries beneath them using
custom contract logic. Once understood, it’s easy to see how any protocol on
top of Hypermap can thrive within even a deeply-nested namespace entry and
create an entire namespace of its own within.

However, there’s a gap that must first be crossed: how do entries immediately
beneath the root node come into existence, such that the first layers of custom
logic, and potentially infinite subsequent layers, can be applied?

These entries immediately beneath the root node are called Top-Level Zones
(TLZs). A fair analogy can be made to Top-Level Domains in the Internet’s
Domain Name System. And like DNS TLDs, the creation of new TLZs in Hy-
permap must be permissioned in some way. Uncontrolled proliferation of entries
at the top level would lead to name-squatting, a lack of reasonable schelling
points, and disincentivize the desired composition of rulesets stacked at various
levels of depth within the map: all issues demonstrated by the history of similar
namespaces. Unlike DNS, though, TLZs in Hypermap must be distributed in a
fair manner and in such a way that overall control of namespace is totally de-
centralized. Of course, ownership of a TLZ is also permissionless once acquired,
28 https://eips.ethereum.org/EIPS/eip-6551

https://eips.ethereum.org/EIPS/eip-6551

30 Benjamin McCormick, Nicholas B Ludwig, Markus Vaas, and James Foley

leaving no central authority in control of namespace operation. The existence of
immutable and relatively ungoverned TLZs also guarantees free expression for
protocols within at least those areas of the namespace.

See Section 9.2 for a description of the multi-phase TLZ distribution process.
A given TLZ can be owned by a contract that implements rent logic, requir-

ing regular payments for control over a sub-entry. Or, an owner contract could
dynamically re-allocate sub-entries as temporary or permanent rewards for auc-
tions, gameplay, or other onchain activities. We anticipate and welcome these
experimental outcomes. A number of TLZs will be transferred to immutable
contracts at launch to perform various system roles and integrate with exist-
ing onchain identity primitives. The os TLZ, for example, will be controlled
by a contract that allows any sub-entry to be minted freely, by anyone, and
owned forever. To prevent name squatting and generally dilute the value of this
“namespace of last resort”, minted sub-entries are required to be 9 or more char-
acters long. This character minimum is an example of custom logic that may be
implemented at the TBA level for a given name entry.

7.2 Name-Keys

Name-keys determine ownership of entries in the namespace and the ability to
both create sub-entries and inscribe data into data-keys. Sub-entries are just
name-keys directly beneath the parent name-key, so, unless contract logic in a
higher parent entry has disallowed it, the name-key hello.os may freely create
sub-entries like sub1.hello.os and sub2.hello.os. Name-keys are tokenized
as ERC-721 NFTs and bound to TBAs at counterfactual addresses. The usual
properties of NFTs apply to name-keys: they may be transferred, wrapped, and
composed with onchain protocols that operate on ERC-721s.

7.3 Data-Keys

Data-keys store content in the Hypermap. There are two flavors: mutable “notes”,
and immutable “facts”.

Entries of this variety may not mint sub-entries, hence the prefix: one can
use ~my-data.hello.os to store data while minting my-data.hello.os in order
to mint sub-entries beneath it, should one desire to do so.

The content of a note or fact is stored as bytes inside the contract map. The
owner of the parent name-key is the only address that can set/modify the data
stored at that slot. The interpretation of stored bytes is the responsibility of the
protocol reading and writing from that entry.

All data is public. Protocols that wish to operate on private data may store
hashes at namespace entries, operate offchain within the end-to-end encrypted
Hyperware networking protocol, or ideally use a combination of both: Hypermap
for public signaling and dispersion of schelling points, peer-to-peer messaging for
data exchange.

Hyperware: A General-Purpose Sovereign Cloud Computer 31

7.4 Extensibility

Hypermap is designed to be extensible. Protocols such as the Hyperware Name
System and the package manager extend Hypermap by interpreting the data
stored at certain keys in a particular way. A specific description of how these
protocols atop Hypermap specify themselves may be seen in Section 3 and Sec-
tion 5, respectively.

In the general case, a protocol specifies itself on Hypermap by declaring a
set of data-keys that are interpreted a certain way and endow certain properties
to their parent name-key. For example, a simple motd (“message of the day”)
protocol might specify that the bytes stored at any ~motd key will be interpreted
as a UTF-8 string message from the parent key, which could be a node identity
in the HNS. If the owner of the key howdy.hypr wishes to participate in this
protocol, it simply mints the key (mutably, one would hope) ~motd.howdy.hypr
and stores bytes there, perhaps [68 65 6c 6c 6f 20 77 6f 72 6c 64].

Extension of Hypermap is totally permissionless: any protocol can operate
on the keys and data stored in the map. Note that if two protocols use the
same entry or entries to store data, key owners may be forced to choose between
participating in one protocol or the other. If an entry label is already in use by a
popular protocol, developers creating a new protocol would be advised to either
match the data format in current use for that entry label, or ensure non-overlap
by prefixing/postfixing the entry label with a custom value. For example, if the
key howdy.hypr is the entry-of-interest, and the motd protocol described above is
in common use, a different protocol that wishes to use the ~motd entry label could
specify that it instead reads that label from ~my-protocol-motd.howdy.hypr.

Another strategy for avoiding conflicts is to subdivide the namespace by
storing a protocol’s data entries at a nested path beneath the relevant entry. A
different protocol that wishes to use the ~motd entry label could specify that
it reads that label from ~motd.my-protocol.howdy.hypr rather than directly
below.

7.5 Counterfactual Addresses For Hyperware Smart Accounts

A counterfactual address is a smart contract address that is known before code
is deployed into its storage on the blockchain. Ethereum enables counterfactual
address creation with the create2 opcode, which deploys code to an address
deterministically generated given the contract address calling the opcode, the
initialization bytecode for the contract to be created, and a salt. Since each
of these factors is known ahead of time for any given entry, every name-key
in Hypermap has a corresponding counterfactual address for its smart contract
account. This property comes in handy when designing protocols that operate
on token-bound accounts. A developer can instruct a user to create a sub-entry
for their node identity and have already deposited assets in the wallet that will
be created as a result.

32 Benjamin McCormick, Nicholas B Ludwig, Markus Vaas, and James Foley

7.6 ERC-6551 Token-Bound Accounts

The smart contract accounts that are deployed to these addresses are ERC-6551
compliant token-bound accounts. This enables the ownership of a given node on
the network to be managed according to any logic that operates on ERC-721
tokens. Anything and everything associated with the account can be transferred
to a new owner.

Token-bound accounts are fully programmable “smart accounts”. As a result,
they can implement arbitrary logic to govern the assets within. They can also
be used to control the sub-entries endowed to them by Hypermap’s logic. By
default, the token-bound account associated with a name entry will have the
sole ability to create sub-entries beneath. This can be modified to expose a
public mint function with arbitrary requirements, such as a minimum amount
of HYPR registered to the sub-entry. Such logic has already been implemented
in various top-level zones to create public namespaces (e.g. os).

When a name entry is created, the minter sets an implementation for the
token-bound account. A name entry in Hypermap may set its gene to a spe-
cific token-bound account implementation. This enforces that all subsequently
created sub-entries will use the same implementation (and inherit the gene as
well), overriding the implementation set by the minter.

7.7 Scaling

The scaling properties of a Hypermap instance are limited by the blockchain
on which it operates. We do not forsee this being an immediate concern as
Ethereum Layer-2s can handle enough transaction throughput to support basic
Hypermap usage for a large number of users. However, a Hyperware-centric fu-
ture will clearly require vastly more scale in terms of Hypermap operations per
second–more than any single blockchain can support today. The scaling solution
must therefore be horizontal: a network of independent Hypermap instances,
each capable of handling a portion of the total state of the namespace. Thank-
fully this strategy dovetails with the single-chain Hypermap implementation.
The Hypermap contract declares a single root node (see Section 7.1). The first
instance of Hypermap simply declares the root node to be 0x0. Subsequent de-
ployments may scale horizontally across multiple blockchains by deploying with
a root node set to an existing namespace entry within the “main” instance (or
even a separate instance, in a nesting pattern).

A subsequent deployment, therefore, has a “pointer” within the primary
namespace and all entries are nested under the entry in the primary names-
pace. The “pointer” entry will likely post immutable facts such as !chain-id
and !address to direct to the subsequent deployment. This strategy will allow
the namespace to easily scale across a variety of Ethereum Layer-2 blockchains,
and possibly other EVM-compliant blockchains. Note that while the namespace
information will work straightforwardly across deployments, the smart account
functionality will require more implementation work to work across chain bound-
aries if at all. Smart account module inheritance may be limited to a single

Hyperware: A General-Purpose Sovereign Cloud Computer 33

chain. It is worth noting, however, that cross-chain messaging projects such as
LayerZero already support functionality for executing transactions from an ERC-
6551 token-bound account in a cross-chain fashion. This means that namespace
entries may operate as wallets across supported chains.

7.8 Review

A quick review of Hypermap’s architecture:

1. All keys are strings containing exclusively characters 0–9, a–z (lowercase), -
(hyphen).

2. A key (also called an entry) may be one of two types, a name-key or a
data-key.

3. Every name-key is an ERC-721 NFT with an ERC-6551 token-bound ac-
count.
(a) Name-keys may create sub-entries directly beneath themselves
(b) Name-keys may inscribe data in data-keys directly beneath themselves.

4. A data-key is controlled by its parent name-key and points to bytes stored
in contract memory.

5. Data-keys are either “notes” (mutable) or “facts” (immutable).
6. An owner of a name-key can apply rules to the path structure beneath that

key.
7. Various protocols will run on top of Hypermap by inspecting specific name–keys

and their data entries, and parsing those entries in various ways.
8. The top level keys are called Top-Level Zones or TLZs.

(a) TLZ minting will be governed in a decentralized manner.
(b) Once created, a TLZ may define custom rules for its sub-entries.
(c) TLZs will produce the tapestry of namespace governance schemes that

allow Hypermap to be used for a wide variety of protocols.

All that remains for a full understanding of Hypermap’s utility is the role of
the HYPR token, which operates in lockstep with the Hypermap namespace.

8 HYPR Token

HYPR is a utility token designed to fill two roles in the Hyperware network:
assignment of relative value in the global namespace and namespace/protocol
governance.

8.1 Registration

A token holder may choose to register HYPR with an entry in Hypermap. To
register HYPR, a token holder submits a transaction to the Hypermap registra-
tion contract specifying the amount of HYPR to register, the duration of the
registration, and the target entry.

34 Benjamin McCormick, Nicholas B Ludwig, Markus Vaas, and James Foley

The minumum registration duration is four weeks (one “month”).
Data-keys (prefixed with ~/!) cannot be a target for registration. Any other

entry is a valid target, from top-level entries to arbitrarily deeply nested en-
tries. The target entry does not need to be owned by the address performing
registration.

Registration of HYPR is performed in order to produce a value-weighted
onchain directory of nodes, apps, and other content. Every protocol built on
Hypermap can automatically benefit from the registration of HYPR to keys to
create a listing data structure that can be sorted, filtered, and act as a market
for user attention.

Note that multiple addresses can register tokens to the same Hypermap entry
at any given time. The amount of HYPR registered to an entry is the sum
of all active registrations. More details about registration can be found in the
Hyperware Tokenomics document, published separately.

8.2 Discussion

As described in Section 2, Hypermap addresses the discoverability problem in
peer-to-peer programming by allowing participants to claim paths and post data
to a global hierarchical namespace. However, this mass of bytes is near-useless
without a weighting mechanism that can be used programmatically or manually
to evaluate content for relative value.

Consider the operation of a web search engine. First, content is crawled
and indexed. In the indexing process, semantic and relative value is assigned
to a given piece of content. These weights are then used during a given search
to provide a ranked set of content objects that best match the search query.
Hypermap combined with HYPR is not itself a search engine, but it does provide
the substrate to operate such mechanisms in a decentralized way. The entries in
the map are content and registered HYPR is a weight-primitive that applies a
topology to that content.

This substrate offers a significant improvement over its centralized counter-
part in that incentives are aligned between users and providers. A “provider” can
be considered any party that places entries in the global namespace. Providers
near-universally seek to optimize for visibility in a zero-sum competition with
other providers. A “user” can be considered any “set of eyes” on the namespace
(not necessarily human eyes), which providers compete over. Historically, both
providers within and the operator of a centralized directory object have been
incentivized to abuse the attention of users. Additionally, operators have been
incentivized to unfairly extract from providers, devising schemes such as placing
a competitor’s entries above a provider unless a special fee is paid. Providers
abuse attention in a similar manner by bribing operators to weight their content
higher in areas where it’s not actually relevant to the user.

These inefficiencies appear unavoidable in the modern web. The Hypermap
architecture combined with a single weighting mechanism publicly shared be-
tween users and providers presents an alternative in which all parties are forced
to compete fairly. Users, too, are empowered to reward entries in the global

Hyperware: A General-Purpose Sovereign Cloud Computer 35

namespace. Because any address can register on any namespace entry, the abil-
ity of a single provider to spend tokens on their irrelevant or otherwise spam-like
entry is generally washed out by the broader ability of users to reward valued
content by attaching to it.

Meanwhile, the “operator” role is neutralized. Hyperware’s constrained gov-
ernance mechanism is responsible for maintaining the namespace but has no
control over the operation of a namespace entry held by another party or the
registration operation. The protocol is naturally incentivized not to interfere with
the utility of HYPR as a weighting mechanism: any “thumb on the scale” would
be visible onchain and immediately impact the value of the neutral weighting
mechanism that is HYPR.

The Hypermap+HYPR substrate does not include a built-in algorithm to
execute “search” or any other ranking strategy on its weights and values. There
is no single algorithm that will apply to the entire Hypermap. Algorithms will
instead be written for specific protocols running on Hypermap. These will have
access to HYPR “weights” as one tool in determining quality rankings, and many
will also take into account other factors. At the time of this writing, it is im-
possible to predict the specifics of algorithms that will enter popular use for
evaluating protocols on Hypermap.

The onchain primitives described in this paper are remarkably simple. Reg-
istering tokens does not require any game theory or MEV protection properties.
Creating and mutating namespace entries is also not subject to adversarial condi-
tions, since the ability to do so is only granted to an entry’s owner.29 As a result,
we have very little to discuss regarding protocol risk, assuming the protocol is
implemented properly30.

It is possible for algorithms operating on Hypermap to use other weight
systems, even including a registration system deployed by someone else that
uses an entirely different token. Hypermap algorithms will undoubtedly, in many
cases, take factors other than just the amount of HYPR registered into account
when ranking and filtering entries. If users, providers, and the operator (the
Hyperware protocol) are all incentivized via protocol ownership, HYPR will
remain an extremely powerful Schelling point for its intended purpose. Protocols
such as HNS and the package manager already integrate with HYPR and future
development of protocols at the OS and core distribution level will use HYPR.
29 That does not mean the same is true for contracts that utilize the protocol. Hyper-

map and HYPR are designed to be modular—as described at length elsewhere in
this paper, much of the utility of the protocol will come from contracts deployed “on
top” to manage a given namespace and other such things. These contracts must be
designed carefully to avoid failure modes common to onchain protocols. For example,
if one deploys a contract to manage a top-level namespace that wishes to allow for
anyone to register a new sub-entry as their node ID, and exposes a function to claim
any name, it would be trivially easy for someone else to front-run that transaction
and “steal” the name. A simple solution is to have the user commit to a hash of their
desired name as in ENS name minting.

30 Audits pending at the time of this writing.

https://docs.ens.domains/registry/eth#commit-reveal

36 Benjamin McCormick, Nicholas B Ludwig, Markus Vaas, and James Foley

What inspires registering tokens to a namespace entry?
Registration of tokens offers utility to the owner of the attached namespace by

enhancing their property’s ranking in various algorithms running on the names-
pace. For this reason, owners of a namespace entry will be naturally incentivized
to register their tokens on their own namespace. This will manifest itself differ-
ently across different protocols running on Hypermap. In the Hyperware Name
System, tokens attached to a node identity enable spam-prevention algorithms,
preferential routing algorithms, and many others that may be built in userspace
or even directly into the OS. The mere social incentive to connect value to an
identity will likely inspire registration. We expect this dynamic to play out not
just for HNS entries, but also for a number of other social or social-adjacent
protocols that naturally fit into the Hypermap architecture.

8.3 Current and Future Uses

HYPR is currently used by both HNS and the Hyperware package manager
protocol to address spam, provide a ranking/sorting system, and assign status
to nodes and apps in a global context.

One interesting option available to protocols on Hypermap not demonstrated
by the protocols in this paper is the ability to discriminate between top-level
zones. It is not required that a protocol apply itself to the entire Hypermap.
Instead, a protocol may define itself as only being valid within a single top-level
domain, a subset of top-level zones, or even a subset of entries at some arbitrary
level of nesting. This may prove to be an ideal way to run protocols in a future
where Hypermap is very large and indexing the entire map is more difficult than
indexing a subset of it.

9 Hyperware Governance

In Fig. 1, Hyperware is presented as a triangle with Hypermap+HYPR and
Hyperware OS above Hyperware Governance. Seated at the base of the protocol,
Hyperware’s governance mechanism is responsible for:

1. Initially distributing the Hypermap namespace and stewarding it towards
full permissionlessness via ossification at the TLZ level.

2. Incentivizing use of the namespace until it becomes self-perpetuating.
3. Voting on proposals to improve Hyperware OS in a backwards-compatible

way over time, while ensuring that adoption of the offchain software remains
aligned with growth of the onchain protocol.

9.1 Voting

HYPR can be locked, producing voting power as a side effect, and allowing
for registration to Hypermap entries as discussed in Section 8.1. Voting power

Hyperware: A General-Purpose Sovereign Cloud Computer 37

is related to the number of HYPR tokens locked and the duration they are
locked for. Voting power can be delegated. More information about locking and
registration can be found in the Hyperware Tokenomics document.

Governance is not an empty role in Hyperware—unlike purely onchain pro-
tocols, which often fail to benefit from active governance, Hyperware governance
includes ongoing responsibilities over the namespace and protocol.

Decentralized finance protocols generally benefit from maximal immutabil-
ity: once a stable and useful primitive exists, its value only tends to decay with
changes. For this reason, “governance” as applied to purely onchain protocols has
historically been somewhat weak. There is no governance necessary if a protocol
is truly immutable and permissionless. Hyperware is not a purely onchain
protocol, however, and its governance must be executed in a decentralized man-
ner for the network to be stable, neutral, and permissionless.

While the governance protocol will be strongly incentivized by builders to
remain permanently backwards-compatible (meaning that protocols launched
on Hyperware will never be forced to apply an upgrade), additive non-breaking
aspects can be integrated into the protocol to keep pace with the fast-moving
world of software.

9.2 TLZ Management

The most important role of the governance mechanism is to steward the Hyper-
map namespace until it can stand on its own.31

At some point, ownership of the Hypermap namespace, and in particular
the TLZs, will be distributed enough that no single entity could disrupt the
operation of the network as a whole by abusing ownership rights. Since each TLZ
can be the root of an entire namespace, the theoretical security requirements for
continued operation of the network are 1 of N good actors. In practice, though,
there should be many hundreds of TLZ owners. Reasonable behavior by owners
will be modulated by two things:

1. The ability of sub-entry owners to move to other areas of the namespace.
2. A strong natural preference by users to use sub-entries controlled by im-

mutable smart contracts.

Therefore, once enough TLZs are held by a diversity of immutable smart
contracts, and possibly mutable contracts controlled by DAOs, the Hyperware
governance mechanism will have succeeded in the first phase of its role. From
that point on, core developers will continue to contribute to the development of
all open-source components of the software.
31 Note that each TLZ can create its own form of governance, and we hope to see a

diversity of approaches. The Hyperware governance mechanism does not dictate how
any portion of the namespace operates.

38 Benjamin McCormick, Nicholas B Ludwig, Markus Vaas, and James Foley

TLZ Auctions Initial namespace distribution will take the form of auctions,
in which the governance mechanism executes a proposal to mint a single TLZ or
bundle of TLZs and send them to an onchain auction contract, where the winner
takes ownership. Auctions can take many forms, such as English or Dutch, and
many smart contract implementations of various auction types exist.32 TLZ
auctions may sell ownership of a namespace entry or merely rent it by either
transferring the NFT to the winner or approving the winner to use a smart
contract, which owns the actual TLZ NFT, for a given period of time.

By auctioning off and otherwise selling namespace, particularly top-level
namespace, the governance mechanism may generate revenue. Revenue earned
this way may be directed anywhere, depending on the auction implementation
approved in a new TLZ proposal, perhaps as further reward for governance par-
ticipation or initiatives to further increase the utility of the namespace.

9.3 Progressive Decentralization

Through 3 phases, Hyperware governance will transition from a small team of
core developers to a fully decentralized protocol.

In phase 1, a small set of TLZs will be selected for creation. These will be
minted directly to contracts, including those already in use such as os, dev, and
hypr, those associated with an existing onchain identity primitive such as eth,
and anything else useful.

During phase 1, more TLZs may be created and distributed. The HYPR
registration mechanism will be activated during this time.

In phase 2, voting is enabled, but proposal creation is permissioned. In order
to achieve distributed ownership of the namespace, the first proposal will be to
approve a list of TLZs to be auctioned off. Auctions will seed a treasury controlled
in a trusted role during phase 1 and later delegated to an adminstrator or possibly
burned, depending on governance decisions. The exact format of the auction is
to-be-determined: it will be onchain with permissionless participation. Auctions
during phase 2 will direct proceeds to a treasury funding core development.33

Phase 2 will last until the auctions have completed and the operating system
is at a point in its development where future changes can be approved or denied
via Improvement Proposals approved by voters. This means the operating system
must be fully specified such that it can be altered by Proposals and confirmed
by Specification votes. Development of the OS to the point of specification may
take anywhere from 6 months to one year from the current implementation.
32 https://a16zcrypto.com/posts/article/how-auction-theory-informs-

implementations
33 The auction contract used in phase 2 will sell ownership of a TLZ: the winner will

have the asset transferred to their address. Phase 3 allows voters to approve any
kind of auction contract, which may include styles of auction that do not transfer
ownership, but rather implement some kind of rent mechanism. TLZs can also im-
plement rent mechanisms of all sorts within their namespace, which is one of the
many modes of TLZ governance we hope to see.

https://a16zcrypto.com/posts/article/how-auction-theory-informs-implementations
https://a16zcrypto.com/posts/article/how-auction-theory-informs-implementations

Hyperware: A General-Purpose Sovereign Cloud Computer 39

Phase 3 begins the fully decentralized operation of the protocol. Proposals
are activated, which combined with voting completes the governance mechanism.
Auctions in phase 3, rather than directing proceeds to a treasury, will direct
HYPR tokens to a burn address. Auction participants will compete to burn the
largest amount of tokens to win the auction. In a similar sense that EIP-1559
directs gas fees to a burn rather than funding a treasury, auctions burning tokens
allow the protocol to maintain neutrality.34

The vote-proposal system includes a precise set of actions:

– Approve/Deny new TLZ + auction contract to be used for auction35

– Approve/Deny new Hyperware Improvement Proposal (HIP)
– Approve/Deny new Hyperware Specification

Proposals will be shared peer-to-peer in the Hyperware network using a pro-
tocol to-be-determined, which will involve a mechanism to filter for meaningful
proposals (itself using Hypermap and HYPR for this purpose, naturally).

Since Hyperware Improvement Proposals (HIPs) affect (only) offchain soft-
ware, they only exist to alter the agreed-upon specification of the operating
system, which is written, hashed, and posted onchain. A successful HIP will re-
sult in a Specification vote. At the point of a successful specification change, all
Hyperware users are expected to run an implementation of the operating system
that comports to the new specification. This will act as an effective Schelling
point for the network.

9.4 Default-distro App: Governance Portal

Hyperdrive will include a Governance Portal app, alongside the App Store and
other utilites. The Governance Portal will serve as a central point where a node
identity can create, vote on, and review proposals. Auctions and other onchain
activities may also be accessible through the Governance Portal.

9.5 Other Duties

The governance protocol may do other work to increase the utility of the names-
pace and improve the functionality of the operating system, such as developing
more Hypermap protocols like HNS and the App Store. It may also take actions
to incentivize use of Hypermap and HYPR together.

One significant possibility for the onchain namespace protocol involves scaling
and expansion. The initial deployment will take place on a single blockchain, but
both volume of transactions and support for composition with other onchain
protocols may inspire expansion to other chains. Horizontal scaling of this kind
is achievable by minting a namespace entry (possibly a new TLZ) that points to
a smart contract on another blockchain. The indicated deployment of Hypermap
34 https://eips.ethereum.org/EIPS/eip-1559
35 Note that the specific implementation of auction can be determined by voters, which

decides the auction style.

https://eips.ethereum.org/EIPS/eip-1559

40 Benjamin McCormick, Nicholas B Ludwig, Markus Vaas, and James Foley

would use that namespace entry as its “root node” (which is simply 0x0 on the
primary deployment). Such decisions will be made by the governance protocol,
which will be the owner of the root node.

With the ability to propose and ratify Hyperware Improvement Proposals,
governance of Hyperware also has the ability to create community Schelling
points around standards in software and data. The emergent behavior of Hy-
perware users will determine how this ability is used, but since each instance of
the operating system is keyed to the decisions of the governance mechanism, one
may expect that the standards around community discussion, including where
it takes place, could one day be determined by the protocol itself. In traditional
centralized software, network effects and switching costs make communities frag-
ile to platform risk or the obsolescence of a key protocol. Hyperware’s governance
mechanism may be the solution to this fragility, allowing the Hyperware commu-
nity at large to coordinate at a meta-level beyond individual apps and protocols.

10 A Hyperware Future

In a Hyperware future, the web as we know it today is replaced by a tapestry
of permissionless protocols that combine the sovereignty of peer-to-peer with
the power of industrial-scale computing. Via runtime extensions and controlled
namespaces, today’s first-party platforms will transform into modularized proto-
cols where users tap into centrally-operated services à la carte. A new generation
of protocols will be built peer-to-peer-first, allowing anyone to act as a provider of
powerful services like AI image, text, and video producers or high-speed anony-
mous networking.

These protocols will not be developed by massive teams or require brigades of
dev-ops workers to stay online. A small group of programmers will specify their
design, create an implementation, and publish it onchain. They may choose to
enable future upgrades by decentralizing the governance of their specification
with a DAO and token, or simply allow its permissionless use forever in a final
state. Switching between protocols will be a trivially easy process for users.
The monopoly of ossified web protocols will be obliterated by Hyperware’s user-
node architecture, which allows for the operation of “transformer” protocols that
enable vampire-attacks on any existing protocol with no technical know-how on
the side of the user. Nodes can run anywhere: by a user in their home, in a data
center, or on a mobile device. Nodes will execute the Hyperware OS specification,
but be virtualized by a diversity of runtimes optimized for different environments.

Mainstream technology will continue to evolve rapidly at both the hardware
and software level. New programming languages and new chips will emerge that
continue to improve on performance and security. Hyperware is a beneficiary of
this innovation, and at the same time, it unleashes the potential of new comput-
ing capabilities while maintaining the sovereignty of the end user.

Hyperware: A General-Purpose Sovereign Cloud Computer 41

11 Appendix: 3 Ways to Use Hyperware

Hyperware enables “sovereign computing” by allowing anyone to run their own
node and communicate directly peer-to-peer using protocols deployed on the net-
work. However, making this sufficiently approachable for non-technical users has
been a stumbling block for past instances of similarly decentralized software. We
address this issue by supporting three user-level entrypoints into the Hyperware
network:

1. Hosted Nodes
2. Desktop App
3. Self-Hosted Nodes

These are presented in order of complexity for the end user, from least techni-
cal to most. We expect that most users will operate hosted nodes while developers
and power users will self-host nodes. The desktop GUI version of Hyperware will
allow anyone with a computer to run a node for free, but have fundamental lim-
itations regarding remote access (such as through a mobile app) and consistent
uptime, which will likely be important for some protocols.

These options are presented today, but as Hyperware matures, routes that
require more technical investment will open up. This includes running Hyperware
OS on a mobile device or distributing a version of Hyperware bundled as a Linux
distribution for bare-metal servers.

1. Hosted Nodes: The absolute easiest way to join the Hyperware network
is to access a node hosted by a professional service. We have already developed
a framework for running such a service and intend to open-source the platform
while partnering with ecosystem participants to offer a managed service. A user
may access a hosted node via a web browser or a mobile app. Hosts may offer
various forms of authentication and payment in exchange for access to the node.

While allowing a host to manage one’s node sacrifices some degree of total
ownership over one’s identity and data, this strategy still offers critical advan-
tages over centralized web services.

Firstly, the user only needs to trust a single entity—the host—rather than a
separate entity for each service they use.

Secondly, node hosts are always engaged in a game-theoretic competition
with other hosts with users as the benefactors. If a host abuses their power, it
is a trivial matter for users to move to another host, because each host offers
the same fundamental functionality, defined by the Hyperware OS specification.
Even offering the ability to import and export an existing node is a feature
enforced by this competition, in the sense that users will undoubtedly choose a
host that offers this ability over one that does not. Game theory also ensures
that hosts will be forced to compete on cost, driving the price of hosting to the
minimum premium over raw compute resources.

In fact, historical precedent indicates that hosting for such a service will
almost certainly be free. Why? Developers of various value-accretive protocols

42 Benjamin McCormick, Nicholas B Ludwig, Markus Vaas, and James Foley

will offer hosting as a loss-leader to attract users. In Hyperware’s case, hosts can
easily offer a node with their software pre-installed, while users can onboard for
free and later migrate their identity to a new host or a fully self-hosted setup.

2. Desktop App: As a second entrypoint into the Hyperware network, we
maintain a desktop application for easy install and execution like that of a regular
program. All that it does is run a node and serve its web frontend as a standalone
application. This is a simple way for users to run a node on their computer
without needing to interact with the command line.

The ability to package Hyperware as a traditional app was a design goal
from the beginning of the project and inspired features such as indirect nodes
described in Section 3.1. Users do not need to perform any advanced system
configuration to robustly run a node from their laptop or desktop computer.

Nodes run in this fashion will inherently lack support for remote access and
regular uptime. Since using Hyperware-powered mobile apps will be a core user
experience, most long-term users will be driven to either find a hosting solution
or self-host. The same holds true for running protocols that require a node
to regularly perform actions or receive messages on the network: the uptime
characteristics of a desktop app are not appropriate for such tasks. However, the
desktop app will be ideal for testing out Hyperware as a casual user.

3. Self-Host a Node: Running a node on a home server or VPS instance offers
the most control over one’s identity and data. It is also a somewhat technical
process that involves navigating a command line interface and performing sys-
tem administration tasks like installing a web server, managing a firewall, and
configuring DNS. Only a small fraction of users will ever choose to self-host,
but for developers and power users (who, for example, may want to provide
services like RPC access or compute resources to other nodes) it will always be
the best option. Self-hosting Hyperware is similar in complexity to operating a
full node for a blockchain and has the same uptime considerations. However,
the Hyperware network does not have a network-wide consensus mechanism,
so the importance of distributing nodes across many different entities is signifi-
cantly reduced. It is safe to have the vast majority of nodes distributed across a
few hosting providers, with a relatively small number of self-hosted nodes. Self-
hosting in the CLI and desktop app form will always be available as a fallback
to maintain user sovereignty.

	Hyperware: A General-Purpose Sovereign Cloud Computer
	Overview
	Hypermap
	Example Hypermap Entries

	HNS: Hyperware Name System
	Specification
	Indexing
	Adding Other Onchain Identity Primitives

	Hyperware OS
	WIT
	Microkernel
	Message Passing
	Capabilities-Based Security
	System Primitives
	Example Process
	Selected Runtime Modules
	Runtime Extensions
	Backwards Compatibility

	Package Manager
	Specification
	Package Metadata
	Package Manifest
	Hyperdrive App: App Store

	Kit
	Hypermap Advanced
	Top-Level Zones
	Name-Keys
	Data-Keys
	Extensibility
	Counterfactual Addresses For Hyperware Smart Accounts
	ERC-6551 Token-Bound Accounts
	Scaling
	Review

	HYPR Token
	Registration
	Discussion
	Current and Future Uses

	Hyperware Governance
	Voting
	TLZ Management
	Progressive Decentralization
	Default-distro App: Governance Portal
	Other Duties

	A Hyperware Future
	Appendix: 3 Ways to Use Hyperware

